
Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training

Jie You∗ Jae-Won Chung∗ Mosharaf Chowdhury
University of Michigan

Abstract
Training deep neural networks (DNNs) is becoming increas-
ingly more resource- and energy-intensive every year. Unfor-
tunately, existing works primarily focus on optimizing DNN
training for faster completion, often without considering the
impact on energy efficiency.

In this paper, we observe that common practices to improve
training performance can often lead to inefficient energy us-
age. More importantly, we demonstrate that there is a tradeoff
between energy consumption and performance optimization.
To this end, we propose Zeus, an optimization framework to
navigate this tradeoff by automatically finding optimal job-
and GPU-level configurations for recurring DNN training
jobs. Zeus uses an online exploration-exploitation approach
in conjunction with just-in-time energy profiling, averting the
need for expensive offline measurements, while adapting to
data drifts over time. Our evaluation shows that Zeus can im-
prove the energy efficiency of DNN training by 15.3%–75.8%
for diverse workloads.

1 Introduction
Deep neural networks (DNNs) have received ubiquitous adop-
tion in recent years across many data-driven application do-
mains such as computer vision [20, 38, 65], natural language
processing [21, 57], personalized recommendation [32, 39],
and speech recognition [33]. To effectively support such
growth, DNN models are predominantly trained in clusters of
highly parallel and increasingly more powerful GPUs [15,70].

However, growing demand for computation ultimately
translates to greater energy demand. For instance, train-
ing the GPT-3 model [13] consumes 1,287 megawatt-hour
(MWh) [75], which is equivalent to 120 years of electricity
consumption for an average U.S. household [1]. This trend
continues to grow: Meta reports an increasing electricity de-
mand for AI, despite a 28.5% operational power footprint re-
duction [96]. Yet, existing literature on DNN training mostly
ignores energy efficiency [83].

We observe that common performance optimization prac-
tices for DNN training can lead to inefficient energy usage.
For example, many recent works prescribe large batch sizes
for higher training throughput [29,84]. However, we show that
maximizing raw throughput may come at the cost of lower

∗Equal contribution.

energy efficiency. Similarly, modern GPUs allow the configu-
ration of a power limit that caps its maximum power draw, but
existing solutions often ignore it. Our analysis of four genera-
tions of NVIDIA GPUs shows that none of them are entirely
power proportional, and drawing maximum power gives di-
minishing return. Indeed, carefully choosing the right batch
size and GPU power limit can reduce energy consumption by
23.8%–74.7% for diverse workloads (§2.2).

Unfortunately, reducing energy consumption is not entirely
free – we discover that there is a tradeoff between energy con-
sumption and training time for a given target accuracy (§2.3).
Our characterization of the energy-time Pareto frontier high-
lights two notable phenomena. First, for a given training job,
all Pareto-optimal configurations provide varying amounts of
energy reductions in comparison to blindly using the maxi-
mum batch size and GPU power limit. Second, the amount
of reduction in energy consumption often has a non-linear
relationship with the increase of training time. This raises a
simple question: how do we automatically identify and navi-
gate the tradeoff between energy consumption and training
time for DNN training?

In this paper, we present Zeus to address this question.
Zeus is a plug-in optimization framework that automatically
configures the batch size and GPU power limit to minimize
the overall energy consumption and training time for DNN
training jobs (§3). Unlike some recent works that only con-
sider GPU-specific configurations [11, 87], Zeus simultane-
ously considers job- and GPU-related configurations. More-
over, it does not require per-job offline profiling or prediction
model training [90, 101], both of which can be prohibitive in
large clusters with heterogeneous hardware and time-varying
workloads [94]. Instead, Zeus takes an online exploration-
exploitation approach tailored to the characteristics of DNN
training workflows. That is, as new data flow into the pipeline,
models need to be periodically re-trained [37], manifesting
itself as recurring jobs in production clusters [37, 94]. Lever-
aging this fact, Zeus automatically explores various configu-
rations, measures corresponding gains or losses, and continu-
ously adjusts its actions based on its measurements (§4).

Designing such a solution is challenging due to two sources
of uncertainty in DNN training. First, due to the random-
ness introduced from DNN parameter initialization and data
loading, the energy consumed until a DNN reaches its tar-
get accuracy varies even when training is run with the exact
same configuration [19, 82]. Thus, evaluating a configura-

tion only once does not provide sufficient information about
its expected energy consumption. Second, since both DNN
models and GPUs have diverse architectures and unique en-
ergy characteristics [93], offline profiling results do not easily
generalize to other DNNs and GPUs. Aggravating these chal-
lenges is the large size of the possible configuration space,
with each configuration taking hours or even days to evaluate.

Zeus can efficiently determine the optimal set of knobs in
the configuration space by decoupling the optimization of
batch size and power limit without losing optimality. Specif-
ically, it captures the stochastic nature of DNN training by
formulating the batch size optimization problem as a Multi-
Armed Bandit (MAB) and runs online optimization under ran-
dom observations using the Thompson Sampling policy [88].
Additionally, Zeus’s just-in-time (JIT) energy profiler finds
the optimal power limit while training is running, making
Zeus a completely online optimization framework.

We have implemented Zeus and integrated it with Py-
Torch [74] (§5). Evaluation on a diverse workload consisting
of speech recognition, image classification, NLP, and recom-
mendation tasks shows that Zeus reduces energy consumption
by 15.3%–75.8% and training time by 60.6% w.r.t. simply
selecting the maximum batch size and maximum GPU power
limit. Zeus converges to optimal configuration among avail-
able ones quickly and can adapt to data drift effectively. Zeus’s
benefits expand to multi-GPU settings as well (§6).

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to charac-
terize the energy consumption vs. performance tradeoff
for DNN training in terms of job- and GPU-specific con-
figuration parameters.

• We present an online optimization framework that can
learn from and adapt to workload dynamics over time.

• We implement and evaluate the optimizer in Zeus that
integrates with existing DNN training workflows with
little code change and negligible overhead, while enabling
large benefits.

Zeus is open-source and available on GitHub.2

2 Motivation
In this section, we present an overview of energy consumption
characteristics of DNN training on GPUs, opportunities for
reducing energy consumption, and conclude with characteriz-
ing the tradeoff between reducing energy consumption and
improving training performance.

2.1 DNN Training

Modern DNNs are trained by going over a large dataset mul-
tiple times, where each pass over the dataset is termed an
epoch [28]. One epoch of training consists of thousands
of iterations of gradient descent over equally sized mini-

2https://github.com/SymbioticLab/Zeus

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

Figure 1: Energy usage normalized against baseline for DNN
training, measured on NVIDIA V100 GPU. Baseline uses maxi-
mum power limit and the default batch size presented in the origi-
nal model publication when available or the maximum batch size
which can consistently reach the target metric.

batches, with the batch size affecting model accuracy,3 train-
ing throughput, and energy consumption. The performance of
DNN training is often measured in terms of time-to-accuracy
(TTA) for a given target accuracy [19], and increasing training
throughput (or precisely goodput [77]) leads to lower TTA.

Modern DNNs are predominantly trained on increasingly
more powerful GPUs, consuming more energy in the pro-
cess [4, 75, 96]. Recent benchmarks show that GPUs are re-
sponsible for around 70% of the total energy consumption
during DNN training [22, 41].

In production GPU clusters, as new data flow into the ma-
chine learning pipeline, DNNs need to be periodically re-
trained at intervals as short as every hour [37]. This need
manifests itself as recurring jobs in the GPU cluster [37, 94].

2.2 Opportunities for Improving Energy Efficiency

We highlight two job and hardware configurations that can
cause sizable energy inefficiency in DNN training: (1) batch
size and (2) power limit of the GPU.

Impact of batch size on energy efficiency. The size of each
mini-batch during DNN training (batch size) determines how
many samples are processed in one iteration. The higher it is,
the faster we can go over the entire input dataset.

We observe across diverse DNN training workloads that
common choices of batch size can lead to more energy con-
sumption for the same target accuracy. Specifically, we per-
formed a sweep over a large range of valid batch sizes (from
8 to the maximum batch size that fits in GPU memory) for
six deep learning workloads including computer vision (CV),
natural language processing (NLP), recommendation, and
speech recognition on an NVIDIA V100 GPU (Figure 1).4

Section 6.1 provides details on workloads and methodology.
We find that the energy-optimal batch size (Batch Size Opt. in
Figure 1) can lead to 3.4%–65.0% lower energy consumption
than the default choice for the same target accuracy.

3In this paper, we specifically consider the validation accuracy of the
model, which captures how well the model generalizes to unseen data.

4We measure GPU power consumption using NVML [2].

https://github.com/SymbioticLab/Zeus

0 20000 40000 60000 80000
Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e7

Avg
Pow

er=
90 W

att

Av
gP
ow
er
=2

10
W
at
t

Feasible
Baseline
Pareto Front

(a) Energy-Time Tradeoff

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(b) Pareto Front Zoom-in

Figure 2: DeepSpeech2 trained with LibriSpeech on NVIDIA V100: (a) ETA vs. TTA. The red dots indicate all feasible configurations. The
two gray dotted lines indicate two boundaries characterized by average power consumption. The green line indicates the Pareto frontier
over all configurations. (b) Zoom-in view on the Pareto frontier in (a), with batch size and power limit annotated on each data point.

Impact of GPU power limit on energy efficiency. Setting
a GPU’s power limit will have the device internally trigger
dynamic voltage and frequency scaling (DVFS) such that its
power draw does not exceed the power limit [69]. If not set
manually, the power limit is at the maximum by default. We
performed a sweep over a wide range of GPU power lim-
its5 for the aforementioned setup. We found that the optimal
energy consumption (Power Limit Opt. in Figure 1) may hap-
pen at a lower power limit than the maximum and can reduce
energy consumption by 3.0%–31.5%.

Joint optimization. As Figure 1 shows, we can achieve
even more energy savings (23.8%–74.7% reduction) if we
jointly optimize both configurations. Note that we observed
similar opportunities for reducing energy consumption for
other generations of GPUs as well (Figure 15 in Appendix A).

2.3 Energy-Performance Tradeoffs

Opportunities for reducing DNN training energy consumption
comes with a cost. When optimized for energy efficiency,
DNN training performance (time-to-accuracy, or TTA) may
be impacted. In the following, we characterize this tradeoff.

We define the energy consumption of DNN training until it
reaches its target accuracy as its energy-to-accuracy (ETA):

ETA(b, p) = TTA(b, p)×AvgPower(b, p), (1)

where p denotes the GPU power limit, b the batch size, and
AvgPower(b, p) the average power consumption during train-
ing with configuration (b, p). Similar to TTA, ETA captures
the end-to-end goal of DNN training.

Note that AvgPower(b, p) is not the same as the GPU
power limit. When changes in configuration (b, p) lead to

5From the minimum to the maximum power limit allowed by NVIDIA
System Management Interface [3]; from 100W to 250W for NVIDIA V100.

an increase in TTA, ETA does not always follow because
AvgPower(b, p) can decrease more. This motivates us to in-
vestigate the tradeoff between ETA and TTA.

Tradeoff between ETA and TTA. We characterize and
elaborate on this tradeoff using DeepSpeech2 trained on Lib-
riSpeech as an example (Figure 2). It shows a scatter plot of
(TTA, ETA) for the batch size and power limit sweep exper-
iments in Section 2.2. We observe similar results for other
workloads as well (Figure 16 in Appendix B).

Let us start with Figure 2a, where each data point denotes
the (TTA, ETA) of training the model for a certain configu-
ration.While sweeping the configurations, we focus on the
boundary of all feasible (TTA, ETA) pairs. We find them to be
bounded by two straight lines characterizing the average GPU
power consumption. When the GPU is under heavy load, the
(TTA, ETA) data points appear closer to 210W. On the other
hand, when the GPU is under lighter load, its average power
consumption tends closer to 90W, which is close to the GPU’s
idle power consumption of 70W. More importantly, we find
a curve along which all (TTA, ETA) pairs achieves Pareto
optimality [16], for which we cannot improve ETA without
sacrificing TTA, and vice versa.

Now let us take a closer look at the Pareto frontier in Fig-
ure 2b, with the configurations used during training annotated
along each data point. We highlight two takeaways:
1. These results show that baseline configurations can lead

to suboptimal energy efficiency (§2). Moreover, it shows
that blindly going for high batch size and power limit
configurations can lead to suboptimal TTA as well.

2. There exists a tradeoff between ETA and TTA, with differ-
ent optimums for each. The configuration optimizing the
ETA (b =32, p =100W) is different from that optimizing
TTA (b =48, p =250W).

3 Zeus Overview
Zeus is an optimization framework that navigates the ETA-
TTA tradeoff by automatically configuring the batch size and
GPU power limit of recurring DNN training jobs. It enables
developers to optimize energy and/or performance metrics
using a single knob.

3.1 Optimization Metric

Defining a good cost metric for users to express their prefer-
ence in this tradeoff is critical in designing Zeus. We propose
a simple cost metric:

C(b, p;η) = η ·ETA(b, p)+(1−η) ·MAXPOWER ·TTA(b, p)
(2)

Here η is the parameter specified by the user to express
the relative importance of energy efficiency and training per-
formance (throughput). When η = 0, we are only optimizing
for time consumption, whereas when η = 1, we are only opti-
mizing for energy consumption. MAXPOWER is the maximum
power limit supported by the GPU, a constant introduced to
unify the units of measure in the cost metric.

3.2 Challenges in Picking the Optimal Configuration

Combining Equations 1 and 2, we have:

C = (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p).
(3)

Picking the optimal configuration(s) to minimize the
energy-time cost C for DNN training is challenging because
the search space [b× p] is large and obtaining the cost of
each configuration is difficult. This is because it is hard to
determine the value of both AvgPower(b, p) and TTA(b, p)
efficiently, as explained below.

• Complex power consumption model: The total energy
consumption of a GPU is affected in a non-linear fashion
by both the characteristics of the workload such as the
number of instructions and memory accesses, as well as
the GPU hardware configurations such as the frequency
and voltage of the cores and memory on board [6, 46].
Existing efforts estimate GPU energy consumption based
on instruction- or kernel-level information [43,64], which
are architecture-specific and workload-dependent.

• Stochastic nature of DNN training: Modeling and pre-
dicting the duration for training a specific model to target
accuracy (TTA) is known to be difficult [31]. Moreover,
the randomness introduced during model initialization
and data loading leads to variations of TTA, even when
the same job is run on the same GPU with the same con-
figuration – TTA variations can be as large as 14% [19].

Fortunately, DNN training jobs often recur in production
clusters [37, 94]. This provides opportunities for empirical
estimation through repeated measurements across recurrences
of the same training job.

Zeus

Batch Size

Optimizer

Bandit

DL Execution Engine

GPU

NVML

Job2 Job3Job1

Optimization Metric

ETA & TTA

DNN

Training

Stats

DNN

Training

Config

GPU

Power

Config

GPU

Power

Stats

❷ Optimization

❸ Execution

❶ Job Submission

❹ Observation

Power Optimizer

JIT

Profiler

Figure 3: Zeus Workflow.

3.3 Architectural Overview

At a high-level, Zeus takes an online exploration-exploitation
approach to minimize the aggregate cost of recurrent DNN
training jobs. Zeus addresses the aforementioned challenges
with two key components:

1. A just-in-time (JIT) online profiler, which efficiently pro-
files the energy characteristics of the training job online.

2. Multi-Armed Bandit (MAB) with Thompson sampling,
which allows us to embrace the stochastic nature of DL
training and optimize under uncertainty while also adapt-
ing to changing workloads such as data drift.

The combination of the JIT profiler and MAB makes Zeus
a fully online solution, allowing it to immediately begin opti-
mizing for incoming jobs.

Workflow of Zeus. Figure 3 shows an overview of the high-
level workflow of Zeus. In a production environment, users
submit 1 recurrent DNN training jobs (a tuple of data, model,
optimizer, and the target validation metric) to Zeus, along with
a set of feasible batch sizes B and power limits P to explore.
Zeus then predicts 2 the optimal batch size and power limit
configuration based on past execution history, and launches
3 the training job with that configuration. During and after
the training process, 4 statistics about DNN training (e.g.,
validation metric) and GPU power consumption are collected
and fed back to the Zeus optimizer. The Zeus optimizer learns
from the feedback and adjusts its internal states. The train-
ing job will be terminated upon either reaching target metric
or exceeding a stopping threshold determined by Zeus. The
whole process is an automated feedback loop that minimizes
the key objective of energy-time cost.

Building Zeus requires both algorithm design and systems
support. Next we describe the core optimization algorithm
details (§4) and Zeus implementation highlights (§5).

4 Zeus Algorithm Design
In this section, we delve into the details of how Zeus selects
the best batch size and GPU power limit to optimize the over-
all cost of recurrent DNN training tasks. We first present the
optimization problem formulation and how we decouple the
optimizations of batch size and power limit (§4.1). Next, we
show how to optimize power limit (§4.2) and batch size (§4.3)
under the decoupled framework. We conclude by discussing
how we address common challenging scenarios (§4.4).

4.1 Problem Formulation

The objective of Zeus is to minimize the cost of a recurring
job by automatically exploring the feasible set of batch sizes
B and power limits P . In essence, we neither want to incur
too much cost searching for the optimal configuration, nor
do we want to miss it. Minimizing the cumulative cost of the
job over recurrences captures the implicit tradeoff between
exploration and exploitation. Put formally in terms of the cost
function defined by Equation 2, our objective becomes

min
b,p

T

∑
t=1

C(bt , pt ;η)

s.t. bt ∈ B, pt ∈ P ,∀t ∈ [1,T],

(4)

where bt and pt respectively denote the batch size and power
limit chosen at the tth recurrence of the job, and b and p are
vectors of length T .

This is a challenging problem without modification, mainly
because the size of the search space can be in the order of hun-
dreds, and each value of C(b, p;η) inside the search space can
only be obtained by running DNN training until it reaches the
target metric. However, further expanding the cost function
(Equation 3) allows us to decouple the exploration of batch
size and power limit, making the problem more tractable:

C(b, p;η)

= (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p)

= Epochs(b) · η ·AvgPower(b, p)+(1−η) ·MAXPOWER
Throughput(b, p)

.

(5)
where Epochs(b) denotes the number of epochs needed to
reach the target, and Throughput(b,p) epochs per second.

We find two key insights that allow the decoupling of batch
size b and power limit p:
1. Given b, AvgPower(b, p) and Throughput(b, p) can be

profiled quickly during training for all possible choices
of p. This is due to the iterative nature of DNN training,
yielding stable power and throughput estimations even
with a small number of iterations.

2. Epochs(b) is not affected by the choice of p as changing
the power limit does not change what is computed.

This implies that the optimal power limit, given any batch
size, can be determined independently based on online profil-
ing. Moreover, since any choice of batch size is automatically

accompanied by the optimal power limit, our search space is
reduced to the set of batch sizes B .

Formally put, we have decoupled the problem in Equation 4
into an equivalent two-level optimization problem

min
b∈BT

T

∑
t=1

Epochs(bt) ·EpochCost(bt ;η) (6)

where

EpochCost(bt ;η)

= min
pt∈P

η ·AvgPower(bt , pt)+(1−η) ·MAXPOWER
Throughput(bt , pt)

.
(7)

When a job arrives, Zeus will first decide which batch
size to use based on Equation 6 (§4.3). Then, based on the
batch size, Zeus will pick the optimal power limit based on
Equation 7 (§4.2).

4.2 Optimizing the Power Limit

We start with how Zeus determines the optimal power limit
based on Equation 7, given a choice of the batch size. As
highlighted earlier, we leverage the iterative nature of DNN
training and the recurrent nature of jobs in production DNN
training workflows.

When a job with batch size decision b is submitted, our just-
in-time (JIT) profiler is triggered and checks if this batch size
had been profiled before. For an unseen batch size b, it pro-
files AvgPower(b, p) and Throughput(b, p) for all possible
power limits p during the first epoch of the job by partitioning
the epoch into slices at iteration boundaries and dynamically
changing the GPU power limit for each slice. The profile in-
formation is fed back to Zeus, and the optimal power limit
of the batch size is determined by solving Equation 7. The
rest of the epochs are executed with the optimal power limit.
Our online JIT profiling approach consumes strictly less time
and energy compared to offline profiling before running the
job, because the profiling process itself contributes to training
without affecting its accuracy. We show that JIT profiling
incurs negligible overhead in Section 6.5.

4.3 Optimizing the Batch Size

Now we focus on how Zeus determines the batch size bt for
each job recurrence t that optimizes Equation 6. As seen in
Section 4.2, EpochCost(bt;η) is a cheap and deterministic
function that identifies the optimal power limit for any batch
size bt and returns the optimal cost of one epoch. Thus, we
may limit our exploration to choosing the optimal batch size
because whichever batch size we choose, the optimal power
limit will accompany it.

Due to the unpredictable and stochastic nature of DNN
training, picking out the optimal batch size without adequate
exploration is difficult. Hence, a good solution must (1) in-
corporate such nature of DNN training into its exploration
process, and (2) intelligently tradeoff the cost of exploring for

Input: Batch sizes B
Belief posterior parameters µ̂b and σ̂2

b
Output: Batch size to run b∗

Function Predict(B , µ̂b, σ̂2
b):

1 foreach batch size b ∈ B do
/* Sample from the belief distribution */

2 Sample θ̂b ∼N (µ̂b, σ̂
2
b)

3 end
/* Select the arm with smallest mean cost sample */

4 b∗← argminb θ̂b

Algorithm 1: Gaussian Thompson Sampling: Choosing
the next batch size to run (Predict)

potentially better batch sizes and the gain of exploiting batch
sizes that are already known to be good.

Grid search is suboptimal. We argue that exhaustively go-
ing through all batch sizes and selecting the one with the
smallest cost is still suboptimal due to the stochastic nature of
DNN training. That is, because the cost of a DNN training job
can differ even when executed with the exact same configura-
tions, it must be modeled as a cost distribution with unknown
mean and variance. Although performing several trials for
each batch size may yield a better estimation of the mean cost,
such a strategy leads to high exploration cost because it does
not quickly rule out obviously suboptimal batch sizes.

Multi-Armed Bandit formulation. Zeus aims to explore
the cost of different batch sizes and converge to the optimal
batch size, while not incurring too much exploration cost.

Zeus formulates the problem as a Multi-Armed Bandit
(MAB) with T trials and B arms, where each trial corresponds
to a recurrence of the job and each arm to a batch size in B .
MAB is a good fit to our problem scenario in that it captures
the stochasticity of DNN training by modeling the cost of
each batch size as a random variable. Specifically, we choose
the Gaussian distribution [81] due to its representational flexi-
bility. The objective of the MAB formulation is to minimize
the cumulative cost regret defined as

T

∑
t=1

Regret(bt ;η) (8)

where the regret of choosing bt is defined as

Regret(bt ;η)

= Epochs(bt) ·EpochCost(bt ;η)−min
b,p

Cost(b, p;η).

(9)
Minimizing cumulative cost regret aligns with our objective
in Equation 6.

Thompson Sampling. We adopt the Thompson Sam-
pling [81] policy for the MAB formulation to tradeoff ex-
ploration and exploitation, not only because it is known to

Input: Batch size b and observed cost C
Previous cost observations Cb for b
Belief prior parameters µ̂0 and σ̂2

0
Output: Belief posterior parameters µ̂b and σ̂2

b

Function Observe(b, C, Cb, µ̂0, σ̂2
0):

/* Add the most recent cost observation to history */
1 Cb← Cb∪{C}

/* Compute the variance of the cost */
2 σ̃2←Var (Cb)

/* Compute the belief distribution’s posterior variance */

3 σ̂2
b←

(
1

σ̂2
0
+ |Cb|

σ̃2

)−1

/* Compute the belief distribution’s posterior mean */

4 µ̂b← σ̂2
b

(
µ̂0
σ̂2

0
+ Sum(Cb)

σ̃2

)
Algorithm 2: Gaussian Thompson Sampling: Updating
the belief distribution (Observe)

perform well in practice [17, 81] and had successful adoption
recently [58, 67], but also because its modeling assumptions
fit our problem scenario well.

At a high level, Thompson Sampling is an online procedure
that refines its belief about the mean cost of each arm (batch
size) based on experience. At each recurrence, the belief is
used to pick the arm with the lowest estimated mean cost
(Algorithm 1), and the belief is updated based on the actual
cost observed (Algorithm 2).

Specifically, the cost distribution is modeled as a Gaussian
distribution with unknown mean θb. Then, the belief about θb
is modeled with its conjugate prior distribution, which is also
a Gaussian distribution [24]. That is, θb ∼N (µ̂b, σ̂

2
b). Here

it is important to note that 1/σ̂2
b can be thought as of how

confident the policy is in its belief about that arm, with the
confidence increasing as it accumulates more observations of
the cost of choosing that arm. Then, Thompson Sampling au-
tomatically balances exploration and exploitation by choosing
the arm with the smallest mean cost sample θ̂b ∼N (µ̂b, σ̂

2
b)

(Algorithm 1). With low confidence (high variance), θ̂b will
be dispersed across a wider range of costs, having higher
chances of getting chosen even if some of its initial observa-
tions showed high cost. In contrast, when the arms observed
a lot of cost samples and the confidence is high (low vari-
ance), θ̂b is likely to be centered around the mean observed
cost, allowing the exploitation of arms that are known to be
good. After the actual cost of an arm is observed, the belief
parameters of that arm are updated using the Bayes Rule [81]
(Algorithm 2).

The belief prior parameters µ̂0 and σ̂2
0 reflect prior belief

about the mean cost of using the batch size for training and
the confidence of such belief. Hence, the choice of prior pa-
rameters serve as a way to initialize the arms such that they
reflect prior knowledge about the cost of each arm. If such

Recurrences

C
h
o

s
e

n
 B

a
tc

h
 S

iz
e Exploration With Pruning Thompson Sampling

Early

Stopped

Figure 4: An example of batch sizes chosen by Zeus for a recurring
job. Each point is a recurrence. During pruning, Zeus explores
each batch size 2 times in order to observe the cost variance (Line 2
in Algorithm 2).

information is not available, which is our default assumption,
it is also possible to initialize the arms with a flat prior that
assumes no prior knowledge – in our case, this is a Gaussian
distribution with zero mean and infinite variance.

In contrast to grid search, our formulation using MAB and
Thompson Sampling meets the two requirements mentioned
earlier. That is, MAB inherently incorporates the stochastic
nature of DNN training in that it models cost as a random
variable. Moreover, Thompson Sampling can quickly rule
out batch sizes that are obviously suboptimal because the
probability of a smaller mean cost being sampled from an
arm that observed noticeably large cost is low.

4.4 Extensions for Challenging Scenarios

Handling unknown cost variance. Unlike conventional
Gaussian Thompson Sampling applications, we may not as-
sume that the variances of the cost of each arm are known.
That is, the cost variance (i.e., how much the cost will fluctu-
ate even when training is run with the same batch size) is not
known before any observation. Moreover, the cost variance
depends not only on the batch size, but also on the DNN’s
robustness to the randomness in parameter initialization and
data loading, making it difficult to quantify at the time the
MAB is constructed. Hence, our approach is to learn the cost
variance as we observe cost samples (Line 2 in Algorithm 2).

Handling stragglers during exploration. There may be
cases where an exploratory job does not reach the target metric
within a reasonable amount of cost, especially during the
earlier exploration stage. To handle this, we employ early
stopping and pruning. The intuition is that if a batch size does
not reach the target metric even after incurring an exceedingly
large cost, it is highly unlikely to be the optimal one.

For early stopping, we define a cost threshold β ·mint Ct ,
meaning that when the cost of the current job is to exceed β

times the minimum cost observed so far, we stop the job and
retry with another batch size. Here β is a parameter to account
for the stochastic nature of DL training. By default, we choose
β = 2, with which we should be able to tolerate variations of
TTA between different runs of the same configuration, which
is usually less than the 14% [19].

For pruning, as illustrated in Figure 4, we begin with the
default batch size provided by the user and first try smaller
batch sizes until we meet the minimum batch size or a batch

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

Figure 5: ETA of each batch size for DeepSpeech2 trained on
LibriSpeech. Plots for rest of the workloads are in the Appendix C.

Input: Set of batch sizes B
Default batch size b0
Belief prior parameters µ̂0 and σ̂2

0

/* Exploration With Pruning */
1 Recurrence t← 0
2 repeat 2 times
3 Explore b0
4 Explore b < b0 until convergence failure
5 Explore b > b0 until convergence failure
6 B ←{b : b converged}
7 b0← b with smallest cost observed
8 t← t + |B|
9 end

/* Thompson Sampling */
10 while t ≤ T do
11 b∗← Predict(B, µ̂b, σ̂

2
b ∀b ∈ B)

12 Run job with batch size b∗ and add cost to Cb
/* Update our belief of the mean cost */

13 µ̂b, σ̂
2
b← Observe(b,Cb, µ̂0, σ̂

2
0)

14 t← t +1
15 end

Algorithm 3: Gaussian Thompson Sampling Batch Size
Optimizer.

size that fails to reach the target metric before the early stop-
ping threshold. The same process is repeated for batch sizes
larger than the default batch size. Then, only the batch sizes
that reached the target metric are kept in the batch size set
we explore. After performing an initial round of pruning, the
default batch size is updated to be the one with the smallest
cost observed, and we perform pruning once more starting
from the new default batch size.

The intuition behind our batch size pruning approach is the
convexity we observe in the BS-ETA curve around the optimal
batch size (See Figure 5). Moreover, pruning allows Zeus to
quickly rule out batch sizes that are noticeably suboptimal
(typically too large, leading to more training epochs and loss
of accuracy [27, 49], or too small, yielding gradients that are
too noisy [80]), thus cutting down the cost of exploration.

The overall process is depicted in Algorithm 3.

Handling concurrent job submissions. Classic multi-
armed bandit scenarios assume that the MAB immediately
observes the cost of pulling an arm. However, in a DNN

training cluster, recurring jobs may overlap in their execution
when a later job starts before the completion of an earlier job.
In this case, the MAB does not get to observe the cost of the
earlier job at the time it has to decide the batch size for the
later job. For deterministic policies like [8, 56], this leads to
duplication exploration of the same batch size back-to-back,
reducing the efficiency of exploration.

However, Thompson Sampling naturally mitigates this
problem without modification because deciding the next batch
size to explore (Predict) is a random function. That is, be-
cause Thompson Sampling samples the estimated mean cost
from each arm’s belief distribution and returns the arm with
the lowest sampled value, concurrent jobs can run different
batch sizes even if there was no information gained between
the invocations of Predict. This is especially the case during
the early stage of Thompson Sampling when the arms’ belief
distributions have large variances (low confidence), losing
little exploration efficiency.

During the short initial pruning phase, we run concurrent
job submissions with the best-known batch size at that time.
As the best batch size constantly updates throughout the ex-
ploration stage, this strategy fairly distributes the additional
exploration opportunities from concurrent job submissions to
batch sizes that are known to converge. We evaluate Zeus’s ef-
ficacy on handling concurrent job submissions in Section 6.3.

Handling data drift. In production training clusters, the
data on which the model is trained shifts, which is one of
the reasons why re-training is triggered [61, 63]. The impli-
cation of drift in the perspective of the MAB is that the cost
distribution of each arm is non-stationary.

Thompson Sampling allows a simple modification that
allows us to handle non-stationary cost distributions. Since
older cost observations become less and less relevant, we only
operate on a window of N most recent cost observations [10],
and the belief distributions will not take old observations into
account. Unlike exponential decay, windowing also allows the
cost variance of the most recent observations to be estimated
directly. When old history entries are evicted, computing
the new parameters of the arm is also cheap thanks to the
conjugate prior property. This way, Zeus transparently adapts
to data drifts in an online manner, as we show in Section 6.4.

5 Zeus Implementation
Zeus is implemented as a Python library that can be imported
into DNN training scripts. The ZeusDataLoader class in-
tegrates with PyTorch [74]. The class profiles power and
throughput online by slicing epochs in iteration boundaries
and invoking the NVML [2] library for power limit configu-
ration and profiling. We have observed that five seconds of
profiling for each power limit is enough to yield stable results.
With the information, the optimal power limit can be automat-
ically determined and applied. Moreover, ZeusDataLoader
monitors the cost incurred by training and early stops the job
if needed. Listing 1 shows an example training loop integrated

1 from zeus import ZeusDataLoader
2

3 train_loader = ZeusDataLoader(
4 train_set, batch_size, max_epochs, target_metric)
5 eval_loader = ZeusDataLoader(eval_set, batch_size)
6

7 for epoch in train_loader.epochs(): # may early stop
8 for batch in train_loader:
9 # Learn from batch

10 for batch in eval_loader:
11 # Evaluate on batch
12 train_loader.report_metric(validation_metric)

Listing 1: Zeus Integration Example

with Zeus.

Observer Mode. ZeusDataLoader supports Observer
Mode, where it profiles the power consumption and through-
put of each power limit and determines the optimal one, but
keeps the power limit at the maximum. By doing so, with-
out affecting time or energy consumption, ZeusDataLoader
reports how much time and energy the job would have con-
sumed if the power limit were the optimal one, allowing the
user to get an idea of the impact of using Zeus. We believe that
such a feature can encourage Zeus’s adoption by informing
users of its potential savings.

6 Evaluation
We evaluate Zeus’s effectiveness in terms of navigating the
energy-time tradeoff. Our key findings are as follows:
1. Zeus reduces energy consumption by 15.3%–75.8%. It

achieves this by trading off small performance for jobs
that are already throughput-optimal; otherwise, it reduces
training time by up to 60.1% too (§6.2).

2. Zeus quickly converges to optimal configurations (§6.2).
3. Zeus can handle workloads with data drift (§6.4) and

overall incurs low overhead (§6.5).
4. Zeus scales to multi-GPU settings (§6.6) and provides

consistent savings across four generations of GPUs (§6.7).

6.1 Experimental Setup

Testbed Setup. We evaluate Zeus with four generations of
NVIDIA GPUs as specified in Table 2.

Workloads. Table 1 summarizes our workloads. The de-
fault batch size (b0) is chosen from the original model publi-
cation when available; otherwise, it is set to be the maximum
batch size which consistently achieves the target accuracy.

In terms of learning rate, models trained with the
Adadelta [99] optimizer do not require an initial learning
rate. For optimizers that do require an initial learning rate, we
made our best effort in choosing a batch size and learning rate
pair that achieves reasonable accuracies by experimenting
with values from the original publication of the model and
those discovered by popular DL frameworks [95].

After collecting the initial batch size and learning rate pairs,

Task Dataset Model Optimizer b0 Target Metric
Speech Recognition LibriSpeech [73] DeepSpeech2 [33] AdamW [62] 192 WER = 40.0%
Question Answering SQuAD [79] BERT (QA) [21] AdamW [62] 32 F1 = 84.0
Sentiment Analysis Sentiment140 [26] BERT (SA) [21] AdamW [62] 128 Acc. = 84%
Image Classification ImageNet [20] ResNet-50 [38] Adadelta [99] 256 Acc. = 65%
Image Classification CIFAR-100 [53] ShuffleNet-v2 [65] Adadelta [99] 1024 Acc. = 60%

Recommendation MovieLens-1M [34] NeuMF [39] Adam [51] 1024 NDCG = 0.41

Table 1: Models and datasets used in our evaluation. The provided target metrics is the target for each training job. Here b0 denotes the
default batch size presented in the original work when feasible, otherwise we choose the maximum batch size which can consistently reach
the target. The BERT(QA) and BERT(SA) means fine-tuning BERT on the tasks of question answering and sentiment analysis, respectively.

Node GPU Specification Host Specification
HPE Apollo
6500 Gen10 Plus
A40 × 4

Model A40 PCIe CPU AMD EPYC 7513
VRAM 48GB RAM 512GB DDR4-3200
mArch. Ampere Disk 960GB NVMe SSD

CloudLab [23]
r7525
V100 × 2

Model V100 PCIe CPU AMD EPYC 7542
VRAM 32GB RAM 512GB DDR4-3200
mArch. Volta Disk 2TB 7200rpm HDD

Chameleon
Cloud [48]
RTX6000

Model RTX6000 CPU Xeon Gold 6126
VRAM 24GB RAM 192GB
mArch. Turing Disk 256GB SSD

Chameleon
Cloud [48]
P100 × 2

Model P100 CPU Xeon E5-2670 v3
VRAM 16GB RAM 128GB
mArch. Pascal Disk 1TB HDD

Table 2: Hardware used in the evaluation.

when we scale the batch size, we applied Square Root Scal-
ing [42] for adaptive optimizers such as Adam [51] following
recent theoretical results [30].

Baselines. We compare against the following baselines:
1. Default (b = b0, p = MAXPOWER). This is often the default

configuration used by practitioners, where the GPU power
limit is set to, or rather not changed from, the maximum.
This is the most conservative baseline with no exploration.

2. Grid Search with Pruning. This one tries out one configu-
ration of (b, p) for each recurrence of the job and selects
the best one. We optimize naïve grid search by having it
prune out batch sizes that failed to reach the target metric.

Metric. Our primary metrics are ETA (energy consumption)
and TTA (training time). Ideally, we want to reduce both; but
due to their tradeoff, sometimes it may not be possible to
simultaneously do both.

Defaults. All experiments are done on NVIDIA V100
GPUs, unless otherwise mentioned. By default, we highlight
η = 0.5 to strike a balance between ETA and TTA. Later, we
sweep η from 0 to 1 (§6.7). The early-stopping threshold β is
set to 2, and we also sweep β from 1.5 to 5 (§6.7).

Methodology. Due to resource constraints and environmen-
tal concerns, we cannot afford to repeatedly train all of our
workloads with various configurations end-to-end hundreds
of times sequentially. However, similar to how Zeus decou-
ples the exploration of batch size and power limit, we may
apply the same decoupling in our experimentation. That is,
we instead take a trace-driven approach, where we collect two

kinds of trace data:

1. Training trace. We train all possible combinations of mod-
els and batch sizes until convergence and record the num-
ber of epochs the model took to reach its target accuracy.
We repeat this with four different random seeds for every
combination to capture the stochasticity in DNN training.

2. Power trace. We use our JIT profiler to collect the through-
put and average power consumption of all possible com-
binations of model, batch size, and power limit.

We then replay these traces when we need to train a model
and reconstruct its TTA and ETA values in order to evaluate
the decisions made by Zeus and baselines. Moreover, since
we have access to all the possible choices and their outcomes,
we also know the optimal choice. Therefore, with the traces,
we can evaluate the regret achieved by Zeus and baselines.

Note that Zeus does not directly learn from these traces
(which would be offline-profiling), but instead only learns
from the replay of these traces in an online fashion.

While the aforementioned trace-driven method is used
widely throughout our evaluation, we run Zeus end-to-end for
the evaluation of handling data drift (§6.4) because it is more
expensive to construct the trace for the drifting dataset.

6.2 Zeus Performance

In this section, we evaluate the performance of Zeus in terms
of energy consumption and training time as well as the con-
vergence characteristics of our Multi-Armed Bandit algo-
rithm. Each experiment is run across multiple recurrences
of DNN training jobs. We select the recurrence number to be
2 · |B| · |P |, so that the Grid Search baseline finishes explo-
ration and also has plenty of chances to exploit its choice.

Improvements in ETA. Figure 6a shows the energy con-
sumption (ETA) of the last five recurrences of Zeus and Grid
Search w.r.t. the Default baseline, aiming to compare the fi-
nal point each approach converged to. Zeus reduces energy
consumption (ETA) by up to 15.3%–75.8% w.r.t. the baseline.
This is also comparable to the reduction we found by exhaus-
tively searching through all the configurations in Section 2 as
well as by using Grid Search.

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 6: Zeus reduces energy consumption for all workloads. (a)
energy consumption, (b) training time of each workload, normal-
ized by the Default baseline. Results are computed with the last
five recurrences, capturing the knobs each method converged to.

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) ResNet-50

Figure 7: Cumulative regret of Zeus vs. Grid Search for (a) Deep-
Speech2 and (b) ResNet-50.

Tradeoff with TTA. Figure 6b shows the time consumption
(TTA) of the last five recurrences of Zeus and Grid Search
w.r.t. the Default baseline. Even though Zeus reduces training
time by up to 60.1%, for some workloads TTA is increased
by 12.8% (Figure 6b). This is due to the tradeoff between
ETA and TTA, which is the central focus of this paper. This is
especially true for workloads with a b0 tuned for minimizing
training time, where there is little room for TTA improvement.

Cumulative regret. While Zeus and Grid Search perform
close to each other, Zeus uses significantly smaller amount
of resources to converge. As a bandit-based solution, the
effectiveness of our algorithm can be quantified via regret,
the difference between the decision selected and the optimal
choice (Equation 9 in Section 4.3).

Figure 7 shows the cumulative regret of Zeus and Grid
Search for DeepSpeech2 and ResNet-50. The optimal con-
figuration is identified separately by an exhaustive parame-
ter sweep. We observe that in both workloads, Zeus is able

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) Zeus

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) Grid Search

Figure 8: Search paths of (a) Zeus and (b) Grid Search for Deep-
speech2. The heatmap in the background shows the regret of each
(Batch Size, Power Limit) configuration. Darker background de-
notes lower regret and therefore better configuration. The colored
line with shifting color shows the search path, with darker color
being later recurrences.

to achieve better regret from the first job recurrence. Zeus
reaches the plateau in the cumulative regret earlier than Grid
Search, which means it converges to the optimal solution ear-
lier. We observe similar results for other workload as well
(Appendix D). In the worst case, Grid Search results in 72×
more cumulative regret than Zeus until convergence.

Convergence to a Pareto-optimal configuration. Despite
having no information about the application beforehand, Zeus
learns the energy characteristics of it online in a few itera-
tions. Figure 8 shows the search path of Zeus and Grid Search
during training DeepSpeech2. Due to the decoupling in the
optimization of power limit and batch size, Zeus explores the
configuration space more efficiently and converges to the opti-
mal configuration much faster. We observe similar results for
other workloads (see Appendix E). Moreover, in Figure 8b we
observe that Grid Search may not even converge to optimal
configuration. This is due to the stochastic nature of DNN
training, with even the same batch size yielding different en-
ergy and time consumptions. Hence, Grid Search may choose
a suboptimal configuration when a suboptimal configuration
luckily yields good energy and time consumptions.

6.3 Trace-Driven Simulation Using the Alibaba Trace

Here we evaluate how Zeus can save energy and time con-
sumption for DNN training in large clusters. We run trace-

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 9: Zeus reduces energy consumption for all jobs in the
Alibaba cluster trace [94], compared to Grid Search and Default.
(a) Energy consumption with Zeus comparing against baselines,
(b) Training time of each type of workload. Both are normalized
by the Default baseline.

driven simulation using the Alibaba GPU cluster trace [94]
which contains over 1.2 million jobs spanning a period of two
months. The Alibaba GPU cluster trace is suitable for our
evaluation for two reasons. First, the trace identifies groups
of recurring jobs, and each job is annotated with its group ID.
Second, jobs within the same group show overlap in their ex-
ecution, allowing us to evaluate Zeus’s capability of handling
concurrent job submissions with Thompson Sampling.

In order to assign job groups to the workload (Table 1)
that best resembles its runtime, we remove jobs that did not
successfully terminate and run K-Means clustering [36] on
the mean job runtime of each group to form six clusters. Then,
we match the six clusters with our six workloads in the order
of their mean runtime. When running simulation, in order
to capture the intra-cluster runtime variation of each job, we
scale the job runtime with the ratio of the job’s original run-
time to its cluster’s mean runtime. We compare Zeus with
Default and Grid Search and plot the results in Figure 9.

Figure 9a shows the cumulative energy consumption of
training using all three approaches. Zeus outperforms both
baselines for workloads of all types and sizes. Note that there
are scenarios where the Grid Search performs worse than
Default, due to it wasting too much energy and time during
the exploration stage. Thanks to Zeus’s early stopping and
quick online power optimization, its energy and time cost
during the exploration stage is significantly reduced. Across
all the models, Zeus reduces training energy usage by 7%–
52%. Figure 9b shows the training time using Zeus to be
increased by at most 16%, and in many cases even decreased
by up to 33%. Finally, similar to earlier experiments, Zeus

0 10 20 30 40
Slice Index

0.0

0.5

1.0

E
TA

 (J
)

1e6

0

1

2

3

4

TT
A

(s
)

1e3

0

200

400

B
at

ch
 S

iz
e

C
ho

se
n

ETA TTA Batch Size Chosen

Figure 10: Energy and time consumption of training BERT with
Zeus on Capriccio and the batch size chosen for each slice.

had significantly lower cumulative regret than Grid Search.

6.4 Handling Data Drift

While there are previous works that attempt to identify and
address data drift in general ML settings [63], existing datasets
are classification tasks based on small feature vectors [12,35],
completely synthetic [25, 44], or private [66].

Therefore, we create and open-source a new sentiment
analysis dataset called Capriccio that is suitable for evaluating
DNN models. Capriccio consists of 1.6 million tweets over
three months from the Sentiment140 [26] dataset, labeled
with sentiment scores and the timestamp of the tweet. We
emulate data drift by capturing a sliding window of 500,000
tweets (roughly the amount of tweets in one month) at a time
and moving the window forward by each day, generating 38
slices. We skip empty dates to avoid having identical slices.

We train BERT [21] on Capriccio with Zeus configured
with a window size of 10, roughly corresponding to a time
frame of two weeks on Twitter. We plot the selected batch
size for each recurrence (slice) and its corresponding ETA
and TTA of training in Figure 10. It can be seen that spikes in
ETA and TTA (signaling that the current batch size may no
longer be optimal) trigger the exploration of a batch size that
is different from the one previously converged to.

6.5 Overhead of JIT Profiling

Measurements with the Deepspeech2 model using the default
batch size b0 show that JIT profiling results in a 0.01% in-
crease in energy consumption and a 0.03% increase in time
consumption. Such a tiny overhead is possible because the
time needed to profile all power limits is very small (less than
one minute) while one epoch of training spans hours (which is
typical for DL workloads). Measurements on ShuffleNet-v2,
which has much shorter epoch duration, show that JIT profil-
ing results in a 0.6% increase in terms of time consumption
and a 2.8% reduction in energy consumption.

6.6 Scaling to Multi-GPU

While the primary focus of this paper is on single-GPU set-
tings, in this section, we show that Zeus can be extended
to single-node multi-GPU training settings by profiling the
power consumption of all GPUs that participate in training.

40000 45000 50000 55000 60000
TTA (s)

6

7

8
E

TA
 (J

)
1e6

η=0.0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5

η=0.6
η=0.7
η=0.8
η=0.9
η=1.0
Pareto Front

Figure 11: Pareto Front of DeepSpeech2 and how η navigates it.

2 3 4
Early-Stopping Threshold (β)

0.9

1.0

1.1

1.2

1.3

1.4

R
el

at
iv

e
C

um
m

ul
at

iv
e

E
TA

(n
or

m
al

iz
ed

 b
y
β
=
2.
0) DeepSpeech2

BERT (QA)
BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF
Geometric mean

Figure 12: Relative cumulative energy consumption of Zeus across
all jobs, w.r.t. the early-stopping threshold β.

Extensions to distributed multi-GPU setups that involve net-
work communication is a potential future work.

Extending to multi-GPU allows us to compare our energy
and time consumption with Pollux [77], a state-of-the-art dis-
tributed cluster scheduler that dynamically tunes the batch size
during DNN training in order to maximize goodput. Training
DeepSpeech2 on LibriSpeech on four NVIDIA A40 GPUs,
Zeus consumes 12% more time but 21% less energy, com-
paring favorably. We especially note that while Pollux does
not take energy into account, Zeus allows the user to select a
different energy-time tradeoff point (e.g., speed up training
but consume more energy) by selecting an appropriate η.

6.7 Sensitivity Analysis and Ablation Studies

Impact of η. To characterize the impact of η as defined in
Equation 2, we perform a sweep of 0≤ η≤ 1 when training
DeepSpeech2 and plot the resulting optimal (TTA, ETA) in
Figure 11. We also plot the corresponding Pareto Front for
reference. We observe that the resulting (TTA, ETA) data
points fall closely to the Pareto Front. Moreover, we plot the
lines along which the C in Equation 2 is a constant, shown as
the dotted lines. As expected, these lines form an envelope
around the Pareto Front. Additional sensitivity analysis for η

can be found in Appendix F.

Impact of early-stopping threshold β. To study impact of
the early-stopping threshold β, we sweep β from 1.5 to 5 and
measure the cumulative ETA across all jobs. We calculate the
difference in ETA relative to our default choice of β = 2.0,
and plot the result of all jobs as well as a geometric mean
across all jobs in Figure 12. The result shows that the default

Zeus w/o
Early

Stopping

Zeus w/o
Pruning

Zeus w/o
 JIT Profiler

0.0

0.5

1.0

1.5

E
TA

(n
or

m
al

iz
ed

 b
y

Ze
us

)

Figure 13: Performance break-
down of Zeus.

A40
V100

RTX6000
P100

0.0

0.5

1.0

E
TA

(n
or

m
al

iz
ed

 b
y

D
ef

au
lt)

Default
Grid Search

Zeus

Figure 14: Normalized ETA
w.r.t. GPU models.

β = 2.0 chosen by Zeus achieves the lowest geometric mean
across all jobs. The intuition behind this is that when β is too
low, Zeus prematurely stops exploratory runs, reducing the
effectiveness of exploration. In contrast, when β is too high,
it dilutes the benefit of early stopping which leads to inflated
exploration cost.

Impact of individual components. In order to show the
gains from each component, we show the degradation of re-
moving one component from Zeus: no early stopping (setting
β to infinity), no pruning (keeping a batch size that didn’t
reach the target accuracy), and no JIT profiling (profiling each
power limit in different recurrences). Figure 13 shows the
slowdown relative to Zeus after disabling these components.
We observe that the Zeus benefits mostly from early stopping.

Impact of GPU models. Figure 14 shows the geometric
mean of ETA normalized against Default across all jobs. Zeus
achieves consistent ETA reductions across four generations
of NVIDIA GPUs. See Appendix G for all results.

7 Discussion
Choice of configuration knobs. In this paper, we pick the
batch size and GPU power limit as the configuration knobs
for Zeus to optimize. We choose these two to strike a balance
in the tradeoff between the granularity of control and the size
of the search space. For instance, one can set the frequency
and voltage for individual components on the GPU for more
fine-grained control and potentially higher energy efficiency,
but this would result in prolonged exploration in the bigger
search space. In contrast, we choose the GPU power limit,
which effectively controls both frequency and voltage via
DVFS and reduces the search space.

On the DL job configuration side, we pick the batch size
as the knob for a similar reason. Changing the batch size
has a broader impact on energy consumption of end-to-end
DNN training, because it affects both the training time and the
average power consumption during training. In comparison,
other candidate configuration knobs such as learning rate fall
short because they only affect the training time.

Hyperparameter optimization. Hyperparameter optimiza-
tion is an important workload, where many DL training jobs
(trials) are submitted with specific hyperparameters chosen
from a user-defined search space [9, 59, 60, 98]. If the users

submit these trials with a specific batch size, they can specify
the feasible batch size set B to only contain that single batch
size. In this case, Zeus can still reduce energy consumption
by searching for the optimal GPU power limit.

Supporting distributed training. Zeus currently only sup-
ports single-node training, but it can easily be extended to
support distributed scenarios. Since the same type of GPU
will have the same time and power consumption characteris-
tics, we can apply the same power limit configuration across
all GPUs to avoid stragglers. The definition of cost can be
extended to sum over the time and energy consumption of all
GPUs participating in training, and all other components in
our solution can remain identical.

Supporting heterogeneous GPUs. Our solution assumes
that the training job runs on the same type of GPU across all
of its recurrences. However, in practice, this may not always
be possible due to varying resource contention or availability.

It is straightforward to add support for heterogeneous GPUs
under our formulation. That is, cost values observed from one
GPU can be translated to values that represent the charac-
teristics of another GPU. As shown in Equation 6, energy-
time cost can be written as the product of Epochs(b) and
EpochCost(b;η). Here, the former term is independent with
the choice of the GPU. Moreover, the latter term can be
quickly profiled on any GPU because it consists of only
AvgPower(b, p) and Throughput(b, p). Thus, we can obtain
cost values that represent the new GPU by quickly profiling
EpochCost(b;η) for each batch size on the new GPU and
multiplying it with Epochs(b) observed from the previous
GPU. These translated cost observations can then be used to
learn a new MAB that specializes on the new GPU.

8 Related Work
DNN training. A large body of recent studies focus on
creating fast kernels for tensor operations [18, 45, 92, 100],
efficiently placing data and/or computation [55,72,78,97], and
optimizing communication [76, 91]. However, most of them
optimize for TTA and are oblivious of their energy impact.
These works can be applied together with Zeus, potentially
accelerating training while making it energy efficient.

Another recent effort in reducing TTA (without considering
energy) in multi-GPU DNN training settings is Pollux [77].
Pollux dynamically changes the batch size during training
based on the Gradient Noise Scale (GNS) [68]. However,
GNS does not theoretically capture the generalization of the
model [68] and can only be efficiently approximated when
there are more than one GPUs participating in training. Zeus,
on the other hand, optimizes and trades off TTA and ETA by
tuning the batch size across job recurrences and does not alter
the model’s convergence characteristics.

Energy measurement for Deep Learning. A recent line
of research has analyzed the energy consumption [75] as well
as the environmental impact [54, 85] for training large DNN

models inside a cluster. On the device-level, benchmarking
efforts have been made to understand the energy efficiency
and performance of training DNN on GPUs and other accel-
erators [93]. Several Python frameworks have been built for
measurement [14, 40] and prediction [5] of energy consump-
tion for DNN training. Zeus takes a similar software-based
approach to measure power consumption via NVML [2], in
order to perform JIT profiling of DNN training jobs.

Energy optimization for Deep Learning. Existing work
has investigated energy-accuracy tradeoff in the context of
DNN inference with new neural network architecture [89]
and algorithm-hardware co-design [86], and training strate-
gies such as warm-start [7] and gradient-matching-based data
subset selection [50]. Other works optimize energy for DNN
training on multiple GPUs with scheduling [47] and task map-
ping [52]. Zeus complements these solutions as it can be
plugged in transparently into these frameworks.

Several works have studied the impact of GPU dynamic fre-
quency and voltage scaling (DVFS) and power configuration
on the energy consumption and performance of DNN train-
ing [11, 52, 87, 90, 101], wherein they focus on the tradeoff
between the transient metric of system throughput and power
consumption. While these work rely on offline modeling and
profiling, Zeus focuses on a more realistic end-to-end metric
of energy-to-accuracy and is fully online.

BatchSizer [71] introduces batch size as a control knob
to optimize for energy efficiency of DNN inference. Zeus
focuses on DNN training, and takes a holistic approach, opti-
mizing both GPU and job configurations together.

9 Conclusion
In this work, we sought to understand and optimize the energy
consumption of DNN training on GPUs. We identified the
tradeoff between energy consumption and training time, and
demonstrated that common practices can lead to inefficient
energy usage. Zeus is an online optimization framework for
recurring DNN training jobs that finds the Pareto frontier
and allows users to navigate the frontier by automatically
tuning the batch size and GPU power limit of their jobs. Zeus
outperforms the state-of-the-art in terms of energy usage for
diverse workloads and real cluster traces by continuously
adapting to dynamic workload changes such as data drift.
We earnestly hope that Zeus will inspire the community to
consider energy as a first-class resource in DNN optimization.

Acknowledgements
Special thanks to CloudLab and Chameleon Cloud for making
Zeus experiments possible. We would also like to thank the
reviewers, our shepherd Jayashree Mohan, and SymbioticLab
members for their insightful feedback. We also thank our col-
league Rui Liu for his helpful suggestions. This work is in part
supported by NSF grants CNS-1909067 and CNS-2104243
and a grant from VMWare. Jae-Won Chung is additionally
supported by the Kwanjeong Educational Foundation.

References
[1] How much electricity does an American home

use? https://www.eia.gov/tools/faqs/faq.
php?id=97&t=3.

[2] NVIDIA Management Library (NVML).
https://developer.nvidia.com/
nvidia-management-library-nvml.

[3] NVIDIA System Management Inter-
face. https://developer.nvidia.com/
nvidia-system-management-interface.

[4] Thomas Anderson, Adam Belay, Mosharaf Chowd-
hury, Asaf Cidon, and Irene Zhang. Treehouse: A case
for carbon-aware datacenter software. In HotCarbon,
2022.

[5] Lasse F. Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. Carbontracker: Tracking and pre-
dicting the carbon footprint of training deep learning
models. ICML Workshop on Challenges in Deploying
and monitoring Machine Learning Systems, 2020.

[6] Yehia Arafa, Ammar ElWazir, Abdelrahman ElKa-
nishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-
Hameed Badawy, Gopinath Chennupati, Stephan
Eidenbenz, and Nandakishore Santhi. Verified
instruction-level energy consumption measurement for
NVIDIA GPUs. In Proceedings of the 17th ACM In-
ternational Conference on Computing Frontiers, 2020.

[7] Jordan Ash and Ryan P Adams. On warm-starting
neural network training. NeurIPS, 2020.

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter opti-
mization. NeurIPS, 2011.

[10] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochas-
tic multi-armed-bandit problem with non-stationary
rewards. NeurIPS, 2014.

[11] Srikant Bharadwaj, Shomit Das, Yasuko Eckert, Mark
Oskin, and Tushar Krishna. Dub: Dynamic underclock-
ing and bypassing in NoCs for heterogeneous GPU
workloads. In 2021 15th IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), 2021.

[12] Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
Philipp Kranen, Hardy Kremer, Timm Jansen, and
Thomas Seidl. Moa: Massive online analysis, a frame-
work for stream classification and clustering. In Pro-
ceedings of the first workshop on applications of pat-
tern analysis, 2010.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, 2020.

[14] Qingqing Cao, Aruna Balasubramanian, and Niranjan
Balasubramanian. Towards accurate and reliable en-
ergy measurement of NLP models. In Proceedings of
SustaiNLP: Workshop on Simple and Efficient Natural
Language Processing, 2020.

[15] Maurizio Capra, Beatrice Bussolino, Alberto Marchi-
sio, Guido Masera, Maurizio Martina, and Muhammad
Shafique. Hardware and software optimizations for
accelerating deep neural networks: Survey of current
trends, challenges, and the road ahead. IEEE Access,
8:225134–225180, 2020.

[16] Yair Censor. Pareto optimality in multiobjective prob-
lems. Applied Mathematics and Optimization, 4(1):41–
59, 1977.

[17] Olivier Chapelle and Lihong Li. An empirical evalua-
tion of thompson sampling. NeurIPS, 2011.

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
automated end-to-end optimizing compiler for deep
learning. In OSDI, 2018.

[19] Cody Coleman, Daniel Kang, Deepak Narayanan,
Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. Analysis of
dawnbench, a time-to-accuracy machine learning per-
formance benchmark. ACM SIGOPS Operating Sys-
tems Review, 2019.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL), 2019.

https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

[22] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes,
Erika Odmark, Roy Schwartz, Emma Strubell, Alexan-
dra Sasha Luccioni, Noah A. Smith, Nicole DeCario,
and Will Buchanan. Measuring the carbon intensity of
AI in cloud instances. In ACM Conference on Fairness,
Accountability, and Transparency, 2022.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of CloudLab. In ATC, 2019.

[24] Daniel Fink. A compendium of conjugate priors. 1997.

[25] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro
Rodrigues. Learning with drift detection. In Brazilian
symposium on artificial intelligence, 2004.

[26] Alec Go, Richa Bhayani, and Lei Huang. Twitter senti-
ment classification using distant supervision. Stanford
CS224N project report, 2009.

[27] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir
Feinberg, Amir Gholami, Kai Rothauge, Michael W
Mahoney, and Joseph Gonzalez. On the computational
inefficiency of large batch sizes for stochastic gradient
descent. arXiv preprint arXiv:1811.12941, 2018.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate,
large minibatch SGD: Training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[30] Diego Granziol, Stefan Zohren, and Stephen Roberts.
Learning rates as a function of batch size: A random
matrix theory approach to neural network training.
Journal of Machine Learning Research, 23(173):1–65,
2022.

[31] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang
Liu, and Chuanxiong Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In NSDI, 2019.

[32] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford
Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,
et al. The architectural implications of facebook’s
DNN-based personalized recommendation. In HPCA,
2020.

[33] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.

Deep speech: Scaling up end-to-end speech recogni-
tion. arXiv preprint arXiv:1412.5567, 2014.

[34] F Maxwell Harper and Joseph A Konstan. The movie-
lens datasets: History and context. ACM transactions
on interactive intelligent systems (TIIS), 5(4):1–19,
2015.

[35] Michael Harries and New South Wales. Splice-2 com-
parative evaluation: Electricity pricing. 1999.

[36] John A Hartigan and Manchek A Wong. Algorithm
as 136: A k-means clustering algorithm. Journal of
the royal statistical society. series c (applied statistics),
28(1):100–108, 1979.

[37] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-
plied machine learning at Facebook: A datacenter in-
frastructure perspective. In HPCA, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[39] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative fil-
tering. In Proceedings of the 26th international con-
ference on world wide web, 2017.

[40] Peter Henderson, Jieru Hu, Joshua Romoff, Emma
Brunskill, Dan Jurafsky, and Joelle Pineau. Towards
the systematic reporting of the energy and carbon foot-
prints of machine learning. Journal of Machine Learn-
ing Research, 21(248):1–43, 2020.

[41] Miro Hodak, Masha Gorkovenko, and Ajay Dholakia.
Towards power efficiency in deep learning on data
center hardware. In IEEE International Conference on
Big Data, 2019.

[42] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generalization gap
in large batch training of neural networks. In NeurIPS,
2017.

[43] Sunpyo Hong and Hyesoon Kim. An integrated GPU
power and performance model. In ISCA, 2010.

[44] Geoff Hulten, Laurie Spencer, and Pedro Domingos.
Mining time-changing data streams. In Proceedings of
the seventh ACM international conference on Knowl-
edge discovery and data mining (SIGKDD), 2001.

[45] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Op-
timizing deep learning computation with automatic
generation of graph substitutions. In SOSP, 2019.

[46] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Jun-
rui Pan, Amogh Manjunath, Timothy G Rogers, Tor M
Aamodt, and Nikos Hardavellas. AccelWattch: A
power modeling framework for modern GPUs. In MI-
CRO, 2021.

[47] Dong-Ki Kang, Ki-Beom Lee, and Young-Chon Kim.
Cost efficient GPU cluster management for training
and inference of deep learning. Energies, 15(2):474,
2022.

[48] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre
Riteau, Paul Ruth, Dan Stanzione, Mert Cevik, Jacob
Colleran, Haryadi S Gunawi, Cody Hammock, et al.
Lessons learned from the chameleon testbed. In ATC,
2020.

[49] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generaliza-
tion gap and sharp minima. In ICLR, 2017.

[50] Krishnateja Killamsetty, S Durga, Ganesh Ramakrish-
nan, Abir De, and Rishabh Iyer. Grad-match: Gradient
matching based data subset selection for efficient deep
model training. In ICML, 2021.

[51] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR, 2015.

[52] Toshiya Komoda, Shingo Hayashi, Takashi Nakada,
Shinobu Miwa, and Hiroshi Nakamura. Power capping
of CPU-GPU heterogeneous systems through coordi-
nating DVFS and task mapping. In 2013 IEEE 31st
International Conference on computer design (ICCD).
IEEE, 2013.

[53] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.

[54] Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint
arXiv:1910.09700, 2019.

[55] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learn-
ing via guided participant selection. In OSDI, 2021.

[56] Tze Leung Lai, Herbert Robbins, et al. Asymptotically
efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

[57] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. AL-
BERT: A lite BERT for self-supervised learning of
language representations. ICLR, 2020.

[58] Sebastien Levy, Randolph Yao, Youjiang Wu,
Yingnong Dang, Peng Huang, Zheng Mu, Pu Zhao,
Tarun Ramani, Naga Govindaraju, Xukun Li, et al.
Predictive and adaptive failure mitigation to avert
production cloud VM interruptions. In OSDI, 2020.

[59] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-
terina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Ben-
jamin Recht, and Ameet Talwalkar. A system for mas-
sively parallel hyperparameter tuning. Proceedings of
Machine Learning and Systems, 2:230–246, 2020.

[60] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimiza-
tion. The Journal of Machine Learning Research,
18(1):6765–6816, 2017.

[61] Weixin Liang and James Zou. Metashift: A
dataset of datasets for evaluating contextual distri-
bution shifts and training conflicts. arXiv preprint
arXiv:2202.06523, 2022.

[62] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In ICLR, 2019.

[63] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. Learning under concept drift: A
review. IEEE Transactions on Knowledge and Data
Engineering, 31(12):2346–2363, 2018.

[64] Cheng Luo and Reiji Suda. A performance and en-
ergy consumption analytical model for GPU. In 2011
IEEE ninth international conference on dependable,
autonomic and secure computing, 2011.

[65] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and
Jian Sun. Shufflenet v2: Practical guidelines for effi-
cient CNN architecture design. In ECCV, 2018.

[66] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri
Joshi. Matchmaker: Data drift mitigation in machine
learning for large-scale systems. In MLSys, 2022.

[67] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. In SIG-
MOD, 2021.

[68] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018.

[69] Xinxin Mei, Qiang Wang, and Xiaowen Chu. A sur-
vey and measurement study of GPU DVFS on energy
conservation. Digital Communications and Networks,
3(2):89–100, 2017.

[70] Sparsh Mittal and Sumanth Umesh. A survey on
hardware accelerators and optimization techniques for
RNNs. Journal of Systems Architecture, 112:101839,
2021.

[71] Seyed Morteza Nabavinejad, Sherief Reda, and Ma-
soumeh Ebrahimi. Batchsizer: Power-performance
tradeoff for DNN inference. In Proceedings of the 26th
Asia and South Pacific Design Automation Conference,
2021.

[72] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for DNN training. In
SOSP, 2019.

[73] Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. Librispeech: an ASR corpus
based on public domain audio books. In IEEE in-
ternational conference on acoustics, speech and signal
processing (ICASSP), 2015.

[74] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 2019.

[75] David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions
and large neural network training. arXiv preprint
arXiv:2104.10350, 2021.

[76] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. A generic communication scheduler for dis-
tributed DNN training acceleration. In SOSP, 2019.

[77] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang,
Gregory R Ganger, and Eric P Xing. Pollux: Co-
adaptive cluster scheduling for goodput-optimized
deep learning. In OSDI, 2021.

[78] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory optimizations to-
ward training trillion parameter models. In Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2020.

[79] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In EMNLP, 2016.

[80] Sebastian Ruder. An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv:1609.04747,
2016.

[81] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni,
Ian Osband, Zheng Wen, et al. A tutorial on thomp-
son sampling. Foundations and Trends® in Machine
Learning, 11(1):1–96, 2018.

[82] Simone Scardapane and Dianhui Wang. Randomness
in neural networks: an overview. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Dis-
covery, 7(2):e1200, 2017.

[83] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. Green AI. Commun. ACM, 63(12):54–63,
2020.

[84] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V Le. Don’t decay the learning rate, increase
the batch size. In ICLR, 2018.

[85] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for deep learn-
ing in NLP. Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, 2019.

[86] Thierry Tambe, Coleman Hooper, Lillian Pentecost,
Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh,
Paul Whatmough, Alexander M Rush, David Brooks,
et al. EdgeBERT: Sentence-level energy optimizations
for latency-aware multi-task NLP inference. In MI-
CRO, 2021.

[87] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xi-
aowen Chu. The impact of GPU DVFS on the energy
and performance of deep learning: An empirical study.
In Proceedings of the Tenth ACM International Con-
ference on Future Energy Systems, 2019.

[88] William R Thompson. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–
294, 1933.

[89] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,
Henry Hoffmann, Michael Maire, and Shan Lu.
ALERT: Accurate learning for energy and timeliness.
In ATC, 2020.

[90] Farui Wang, Weizhe Zhang, Shichao Lai, Meng Hao,
and Zheng Wang. Dynamic GPU energy optimization
for machine learning training workloads. IEEE Trans-
actions on Parallel and Distributed Systems, 2021.

[91] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Sto-
ica. Blink: Fast and generic collectives for distributed
ML. In Proceedings of Machine Learning and Systems,
2020.

[92] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In OSDI, 2021.

[93] Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhen-
heng Tang, Kaiyong Zhao, and Xiaowen Chu. Bench-
marking the performance and energy efficiency of AI
accelerators for AI training. In 20th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Internet
Computing (CCGRID), 2020.

[94] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei
Lin, and Yu Ding. MLaaS in the wild: Workload anal-
ysis and scheduling in large-scale heterogeneous GPU
clusters. In NSDI, 2022.

[95] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander Rush. Transformers: State-of-the-art natural
language processing. In EMNLP, 2020.

[96] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,
Bilge Acun, Newsha Ardalani, Kiwan Maeng, Glo-
ria Chang, Fiona Aga, Jinshi Huang, Charles Bai,
Michael Gschwind, Anurag Gupta, Myle Ott, Anasta-
sia Melnikov, Salvatore Candido, David Brooks, Geeta
Chauhan, Benjamin Lee, Hsien-Hsin Lee, Bugra Aky-
ildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike
Rabbat, and Kim Hazelwood. Sustainable AI: Environ-
mental implications, challenges and opportunities. In
Proceedings of Machine Learning and Systems, 2022.

[97] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim
Krikun, Dmitry Lepikhin, Andy Ly, Marcello Mag-
gioni, et al. GSPMD: general and scalable paral-
lelization for ML computation graphs. arXiv preprint
arXiv:2105.04663, 2021.

[98] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.
Fluid: Resource-aware hyperparameter tuning engine.
MLSys, 2021.

[99] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

[100] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance ten-
sor programs for deep learning. In OSDI, 2020.

[101] Pengfei Zou, Ang Li, Kevin Barker, and Rong Ge.
Indicator-directed dynamic power management for iter-
ative workloads on GPU-accelerated systems. In 2020
20th IEEE/ACM International Symposium on Clus-
ter, Cloud and Internet Computing (CCGRID). IEEE,
2020.

A Energy Savings Potential on GPUs

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)
Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(a) NVIDIA A40.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(b) NVIDIA V100.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(c) NVIDIA RTX6000.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(d) NVIDIA P100.

Figure 15: Energy usage normalized against Baseline for DNN
training, measured on (a) NVIDIA A40 GPU, (b) NVIDIA V100
GPU, (c) NVIDIA RTX6000 GPU and (d) NVIDIA P100 GPU.

Figure 15 shows the potential for energy savings on four
different generations of NVIDIA GPUs: Ampere (A40), Volta
(V100), Turing (RTX6000), and Pascal (P100). All four gen-
erations show that there are sufficient potential for energy
savings, motivating Zeus.

B TTA vs. ETA for All Workloads
Figure 16 plots the Pareto Front for all six workloads and
the baseline (default batch size and maximum power limit) is
shown as a red triangle. Note that the axes do not start from
zero in order to zoom into the Pareto Front. Data points were
gathered on an NVIDIA V100 GPU.

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(a) DeepSpeech2

6000 8000 10000
Training Time (s)

1.2

1.4

1.6

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e6
32, 250W

12, 125W8, 150W

12, 175W

12, 200W

12, 225W

12, 250W

Baseline
Pareto Front

(b) BERT (QA)

4000 5000 6000
Training Time (s)

7

8

9

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e5
128, 250W

64, 125W
32, 150W

32, 175W

64, 200W

64, 225W

64, 250W

Baseline
Pareto Front

(c) BERT (SA)

70000 80000 90000
Training Time (s)

1.2

1.3

1.4

1.5

1.6

1.7

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
256, 250W

360, 150W

360, 175W

360, 200W

360, 225W

360, 250W

Baseline
Pareto Front

(d) ResNet-50

200 400 600
Training Time (s)

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e5
1024, 250W

128, 100W
128, 125W128, 150W

Baseline
Pareto Front

(e) ShuffleNet V2

20 40 60 80 100
Training Time (s)

1

2

3

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e3
1024, 250W

16384, 150W16384, 175W16384, 225W

Baseline
Pareto Front

(f) NeuMF

Figure 16: ETA vs. TTA across all workloads, with Pareto Front
and default configuration highlighted. Measured on an NVIDIA
V100 GPU.

C ETA w.r.t. Configurations for All Workloads

Figures 17 and 18 respectively show the ETA value when
batch size and power limit are swept. Especially note the
convexity of all BS-ETA curves, which justifies the design of
our pruning exploration algorithm.

D Cumulative Regret of All Workloads

Figure 19 shows the cumulative regret of Zeus and Grid
Search over job recurrences for all six workloads. In gen-
eral, Zeus converges to a better knob than Grid Search while
being faster.

E Search Paths for All Workloads

Figures 20 and 21 respectively show the search path of Zeus
and Grid Search in the 2D configuration space. Thanks to the
decoupling of batch size and power limit, Zeus is able to more
efficiently navigate the search space and converge to a knob
while consuming less energy and time during exploration.

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

(a) DeepSpeech2

10.0
Batch Size

0

1

E
TA

 (J
)

1e6

Error margin

(b) BERT (QA)

10 100
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(c) BERT (SA)

2 × 10
2

3 × 10
2

Batch Size

0

2

E
TA

 (J
)

1e7

Error margin

(d) ResNet-50

10 100 1000
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(e) ShuffleNet V2

100 1000 10000
Batch Size

0.0

2.5

5.0

E
TA

 (J
)

1e5

Error margin

(f) NeuMF

Figure 17: ETA w.r.t batch size of different DNN training workload.
The blue shade shows the error margin across repeated runs.

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

6

E
TA

 (J
)

1e6

(a) DeepSpeech2

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e6

(b) BERT (QA)

100 150 200 250
GPU Power Limit (W)

0.0

2.5

5.0

7.5

E
TA

 (J
)

1e5

(c) BERT (SA)

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e7

(d) ResNet-50

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

E
TA

 (J
)

1e4

(e) ShuffleNet V2

100 150 200 250
GPU Power Limit (W)

0

500

1000

E
TA

 (J
)

(f) NeuMF

Figure 18: ETA w.r.t GPU power limit of different DNN training
workload. Measured on an NVIDIA V100 GPU.

F Additional Sensitivity Analysis
Figure 22 compares both the energy consumption and training
time for Zeus against Default. We also calculate and plot the
geometric mean across all jobs. The result shows that with
higher η, Zeus prioritizes reducing energy consumption over
time, leading to higher improvement factor of energy, and
vice versa.

G Performance of Zeus on All GPUs
Figure 23 presents the energy and time consumption of all
workloads on four different generations NVIDIA GPUs: Am-
pere (A40), Volta (V100), Turing (RTX6000), and Pascal

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) BERT (QA)

0 25 50
Job Recurrence (t)

10
5

10
6

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(c) BERT (SA)

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(d) ResNet-50

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(e) ShuffleNet V2

0 100
Job Recurrence (t)

10
5

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(f) NeuMF

Figure 19: Cumulative regret of Zeus vs. Grid Search across all
workloads.

(P100). The overall trends hold for all GPUs.

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 20: Search path of Zeus across all workloads.

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 21: Search path of Grid Search across all workloads.

(a) ETA

(b) TTA

Figure 22: Impact of priority knob η on ETA and TTA.

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(a) Energy Consumption (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(c) Energy Consumption (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1
TT

A
(n

or
m

al
iz

ed
)

Default Grid Search Zeus

(d) Training Time (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(e) Energy Consumption (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(f) Training Time (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(g) Energy Consumption (P100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(h) Training Time (P100)

Figure 23: Energy and time consumption of DNN training, nor-
malized against Default for DNN training. Results measured on (a)
NVIDIA A40 GPU, (b) NVIDIA V100 GPU, (c) NVIDIA RTX6000
GPU and (d) NVIDIA P100 GPU.

	Introduction
	Motivation
	DNN Training
	Opportunities for Improving Energy Efficiency
	Energy-Performance Tradeoffs

	Zeus Overview
	Optimization Metric
	Challenges in Picking the Optimal Configuration
	Architectural Overview

	Zeus Algorithm Design
	Problem Formulation
	Optimizing the Power Limit
	Optimizing the Batch Size
	Extensions for Challenging Scenarios

	Zeus Implementation
	Evaluation
	Experimental Setup
	Zeus Performance
	Trace-Driven Simulation Using the Alibaba Trace
	Handling Data Drift
	Overhead of JIT Profiling
	Scaling to Multi-GPU
	Sensitivity Analysis and Ablation Studies

	Discussion
	Related Work
	Conclusion
	Energy Savings Potential on GPUs
	TTA vs. ETA for All Workloads
	ETA w.r.t. Configurations for All Workloads
	Cumulative Regret of All Workloads
	Search Paths for All Workloads
	Additional Sensitivity Analysis
	Performance of Zeus on All GPUs

