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ABSTRACT
Training DNNs on a smartphone system-on-a-chip (SoC) with-
out carefully considering its resource constraints leads to subopti-
mal training performance and significantly affects user experience.
To this end, we present Flamingo, a system for smartphones that
optimizes DNN training for time and energy under dynamic re-
source availability, by scaling parallelism and exploiting compute
heterogeneity in real-time. As AI becomes a part of the mainstream
smartphone experience, the need to train on-device becomes cru-
cial to fine-tune predictive models while ensuring data privacy.
Our experiments show that Flamingo achieves significant improve-
ment in reducing time (1̃2×) and energy (8̃×) for on-device training,
while nearly eliminating detrimental user experience. Extensive
large-scale evaluations show that Flamingo can improve end-to-end
training performance by 1.2–23.3× and energy efficiency by 1.6–7×
over the state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Real-time system archi-
tecture; • Computing methodologies → Distributed artificial
intelligence.
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1 INTRODUCTION
Model training and inference at the edge are becoming ubiqui-
tous, allowing for better privacy [44], localized customization [39],
low-latency prediction [39] etc. Google [29] and Meta [43] deploy
federated learning (FL) across potentially millions of end-user de-
vices to mitigate privacy concerns with user-sensitive data migra-
tion; Apple performs federated evaluation and tuning of automatic
speech recognition models on mobile devices [53]. Furthermore,
communication constraints like intermittent network connectivity
and bandwidth limitations (e.g.driving data) also necessitate the
capability to train models closer to the user [42].

Recent advances for on-device model execution focus on theo-
retical optimizations to ML models [40, 55, 60]. However, the exe-
cution engines used to demonstrate these systems are ill-suited
for resource-constrained devices like smartphones. Due to the
lack of easily-extensible mobile backends, today’s on-device ef-
forts often resort to either traditional in-cluster ML frameworks
(e.g.PyTorch [18] or TensorFlow [27]) or operation-limited mobile
engines (e.g.DL4J [5],TFLite [23]). The former prioritizes perfor-
mance over resource usage, while the latter limits which models can
train. Overall, existing on-device training solutions are either sub-
optimal in performance, detrimental to user experience, or limited
in capability.

Unlike cloud or datacenter training devices (i.e., GPUs), smart-
phones are constrained in terms of the maximum electrical power
and energy consumption. Modern smartphones use a system-on-a-
chip (SoC) architecture with a small number of heterogeneous cores,
each with different strengths and weaknesses. These constraints
are exacerbated by dynamic resource availability in smartphones:
the impact on user-facing applications must be minimal when end-
users are actively using the device.

Therefore, efficiently performing training requires careful consid-
eration of multiple constraints: while training on low-performance,
low-power core(s) can meet energy and power constraints with-
out interfering with user applications, this comes at the cost of
time; in some cases, it may be energy-inefficient owing to the long
training duration. Statically allocating cores to applications leads to
resource under-utilization, and existing proposals to offload train-
ing to unused cores do not have practical implementations [45].
Further, running a computationally-intensive workload like DNN
training can significantly degrade user experience due to resource
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contention. In short, we need a practical, bespoke and adaptive sys-
tem for on-device DNN training on smartphone SoCs.

In this paper, we propose Flamingo, a real-time adaptive system
to train DNN models on smartphones in real-world settings, while
considering resource and temperature constraints without hurting
user experience. Our key contributions are as follows:
• We propose a novel dynamic resource assignment algorithm
that tightly couples the DNN model and the heterogeneity
of SoCs, to both optimize resource usage and improve user-
experience.

• We demonstrate Flamingo’s efficacy on user-experience across
a set of popular devices of varying performance capabilities
with a real-world on-device benchmark.

• We also show Flamingo’s efficacy in a large-scale Federated
Learning setting, leading to faster convergence and energy sav-
ings.

• Flamingo can train unmodifed PyTorch models, allowing access
to the full PyTorch operator set and obviating model conversion
for deployment. This is particularly valuable when considering
edge deployment of emerging use cases, such as generative AI
applications.

• Flamingo is implemented in user-space and works across mul-
tiple Android platforms, eliminating platform-specific depen-
dence and dangerous rooting procedures.

2 BACKGROUND & RELATEDWORK
Federated Learning algorithms have made considerable progress
to train the model on the edge. FedProx [49], Fed-ensemble [61]
and FedYoGi [55] reinvent the vanilla model aggregation algorithm,
FedAvg [52], to mitigate the data heterogeneity. Oort [47] orches-
trates global-scale FL clients, and cherry-picks participants to im-
prove the time-to-accuracy training performance, while other ad-
vances are reducing network traffics [57], enhancing client privacy
via differential privacy [33, 67], personalizing models for different
clients [37, 39], and benchmarking FL runtime using realistic FL
workloads (e.g., FedScale [46] and Flower [28]).

Application Sandboxing on Android isolates applications from
each other [2], preventing them from accessing system-information
(e.g. CPU-load) and modifying system-parameters (e.g. CPU fre-
quency). This makes it impossible for user-space apps to monitor
the system and enable intelligent scheduling. “Rooting” the device
could disable sandboxing, but incurs the risk of bricking the device
and making the user data vulnerable to malicious applications [30].

On-device Training on mobile operating systems has been
enabled with frameworks like Apple’s CoreML [4] and Google’s
TFLite [23], with capabilities of offloading compute to the mobile
GPU or a specialized Neural Processing Unit (NPU). Deeplearn-
ing4J [5] and PyTorch offer Java binaries to include with Android
applications for on-device training, but are not space-optimized (up
to 400 MB) and cannot offload training to the mobile GPU. MNN [1]
addresses the first issue by eliminating dependencies with its light-
weight footprint of a few megabytes. [45, 48, 65] propose solutions
to optimize energy consumption by modifying the clock frequency
of the processor. These proposals require platform-specific rooting
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Figure 1: SD865’s Heterogenous SoC Architecture
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Figure 2: Training Resnet34.

procedures to modify such system parameters, making them infea-
sible for deployment due to risks outlined previously 2. Melon [62]
and Sage [38] reduce the memory footprint of training through
recomputation and micro-batching. Mandheling exploits platform-
specific methods to improve energy efficiency, but is limited to
operators that support mixed-precision training [64].

Heterogeneity of Smartphone SoCs stems from packing the
CPU, GPU, memory, and other compute elements into a single
chip, and can vary according to the application. The Snapdragon
SD865 [22] SoC outlined in Fig 1 found in high-end devices has
four low-powered cores (#0-3), four low-latency cores (#4-7), an
embedded GPU and a DSP. One of the low-latency cores (“Prime"
core #7) can run at higher speeds to achieve the lowest latencies.
The SD855 [21] follows the same topology but with slower cores,
while the SD845 [20] lacks a Prime core. These SoCs are thus suited
for mid-range and entry-level devices respectively.

3 MOTIVATION
Factors: SoC and Model Architectures. The choice of CPU cores
and DNN model architecture can affect performance metrics such
as training latency, average power and energy consumed. Fig 2
details the resource usage to train Resnet34 on a Pixel 3 using
PyTorch, on a variety of CPU core combinations. PyTorch uses a
greedy strategy to pick as many threads as there are low-latency
cores. The fastest choice to train the network is to use all the low-
latency cores (i.e.,4567), with higher compute scaling improving
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Figure 3: Training ShuffleNetv2.
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Figure 4: Impact of training on PCMark score.

latency. In contrast, the most energy-efficient choice is to involve
any one of the low-latency cores. This brings up an interesting
observation: low power usage does not translate to low energy usage;
while combinations involving the low-power cores (i.e., 0–3) are al-
ways more power-efficient, they need not be more energy-efficient.
Lower power leads to slower execution, increasing the total energy
spent over a longer period of time.

However, these observations are not universal. Training Shuf-
fleNet on the Pixel 3 (Fig 3) results in using one of the low-latency
cores as both the fastest and most energy-efficient choice. Compute
scaling becomes ineffective due to the memory-intensive depth-
wise convolution operations [54, 66]. Multiple threads running
memory-intensive operations compete for the cache leading to
cache-thrashing, reducing overall performance. Using just one
thread allows the cache to be used in an exclusive manner. This
is a known issue that has been addressed in GPUs [54] and Intel
CPUs [6], but is yet to be addressed for ARM CPUs. In the absence
of a pre-optimized training backend, it is necessary to customize
the execution for every model and SoC combination.

Consequence: User Experience. On-device training adversely
impacts user-experience due to its resource-intensive profile, re-
stricting FL deployments to train only when the device is idle [7, 58].
The adverse user experience can manifest as slower device re-
sponses, delayed video playback etc. We can quantify this impact
by comparing the performance difference of a representative bench-
mark of real-world usage, like PCMark Work 3.0 [17]. Training
in the background has a measurable impact on the PCMark score

Fig 4, with the entry-level Pixel 3 being impacted more than the
Samsung S10e. With a majority of Android applications only using
1–2 threads [36], this presents an opportunity to exploit other CPU
cores that are either under lower load or are being used by low-
priority background services, enabling the training to run even the
phone is being used.

Implications for system design. The execution strategy must
work across the multitude of hardware and model combinations
while considering the impact on user experience.

4 FLAMINGO
Flamingo is a real-time adaptive system for on-device DNN training
on smartphone SoCs, and is the first to improve performance and
energy efficiency of training while minimizing the impact on user
experience. This leads to improved performance for mobile applica-
tions locally as well as quicker model convergence for distributed
applications such as FL. Figure 5 outlines the overall architecture
of Flamingo for an FL application. A local application would omit
the Central Coordinator and FL Aggregator.

4.1 Design Overview
At its core, Flamingo explores combinations of CPU cores as execu-
tion choices to optimize for training time, and identifies alternative
choices when training interferes with user-facing foreground ap-
plications.

Flamingo exploits the heterogeneity in smartphone SoCs to pro-
vide many execution choices to ensure that the device can continue
training under a wider range of resource constraints. Flamingo
infers interference with other applications without rooting the de-
vice and does not need invasive power monitors to measure the
energy expenditure of on-device training, thus enabling large-scale
deployment on Android devices. We also implement a standard-
ized communication interface for the client to be compatible with
existing distributed frameworks , e.g.PySyft (See App B for details).

Here, we summarize the sequence of steps required to involve a
smartphone under Flamingo and elaborate each step (except Moni-
toring) in the following subsections:

(1) Monitoring: Once installed, Flamingo monitors the battery
and device states to decide on accepting a training request. Flamingo
declines the request if the battery is above 35°C, preventing battery
life reduction and thermal pain [10, 35, 50]. When the device is
idle, Flamingo monitors battery drain to determine the background
services’ power usage.

(2) Exploration: Flamingo explores execution choices by pro-
filing their resource usage when the phone is idle and unplugged,
attributing the battery drain to the training and background ser-
vices alone. It picks a different execution choice for each training
request until all choices are explored.

(3) Training: Once exploration is complete, Flamingo can accept
a training request even when the phone is not idle, but only if the
battery is charging or is above a minimum level to prevent low
battery levels. The request can originate from a remote coordinator
or a local app that needs training services (e.g. next-word prediction
for keyboards). It uses the performance profiles of execution choices
to dynamically migrate the execution based on inferred interference
(Fig 5b).
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Flamingo is implemented in user-space1 within Termux [24], a
Linux Terminal emulator for Android. We envision Flamingo as an
OS-integrated service to enable on-device training for any app.

On-Device

Android
Battery 
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Performance 
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execution 
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(a) Architecture of Flamingo

for _ in range(num_batches):
battery_status = flamingo.get_battery()
if battery_status != "charging" or battery_status <

MIN_BAT_THRESHOLD:
break

latency = train(execution_choice)
# Detect interference
if latency > latencies[execution_choice] * 1.1:

# Downgrade Execution Choice
execution_choice -= 1
grade_time = time.now()

# Explore to upgrade choice
elif time.now() - grade_time > _2_minutes:

execution_choice += 1

flamingo.migrate(execution_choice)

(b) Control Loop

Figure 5: Design of Flamingo

4.2 Exploring Execution Choices
In order to accommodate varying compute resource availability
during training, we explore running the training on different com-
binations of compute units. These combinations can be a selection
of CPU cores, or other execution units like the mobile GPU. Since
the PyTorch backend we use is implemented only for CPUs, we
limit the exploration to a combination of CPU cores, but design
our system to be agnostic to the execution choice to scale to other
execution units in the future (Figure 5a). Each choice is profiled
by training on a fixed number of batches, and amortizing the re-
source usage for one local step. For e.g., the state-space for a Pixel
3 has 8 choices, with 4 choices of low-latency cores and 4 choices
of low-powered cores and are enumerated in 4.3. We delve deeper
into the general state-space of choices in Appendix B. Flamingo
explores the state-space in a work-conserving manner, by profiling
while participating in model training.

1https://github.com/SymbioticLab/FedScale/tree/master/fedscale/edge/termux

This exploration can be eliminated by leveraging the central
coordinator(s) in distributed learning systems. For e.g., the coordi-
nator in federated learning can store the performance profiles for a
specific device model once the first client running on that model
completes its exploration. The aggregator can then redistribute
these performance profiles to new clients running on the same
device model, allowing them to skip exploration to immediately
becoming available to participate.

4.3 On-Device Training
Flamingo maximizes training performance in the presence of user-
facing foreground applications by dynamically modifying its com-
pute footprint.

Our strategy prefers shorter training latencies by using low-
latency cores (large footprint), but relinquishes them (leading to
a smaller footprint) to foreground applications when necessary.
Flamingo only relinquishes as many cores as is necessary to mini-
mize interference, thus making effective use of unused compute in the
resource constrained environment. It sorts the execution choices
according to their performance profile in the decreasing order of
compute footprint, enabling Flamingo to downgrade its footprint
when detecting interference. Flamingo then tailors the order to the
SoC-DNN combination at hand by avoiding sub-optimal choices and
those that do not present a viable trade-off, i.e.increasing the foot-
print does not reduce training latency. The following rules define a
relative order between execution choices,
(1) Using more cores of the same type is preferred (e.g. 4567 pre-

ferred over 4).
(2) Using any number of low-latency cores is preferred over using

any number of low-power cores (e.g. 4 preferred over 0123).
(3) Prime cores (#7), if present, are preferred over other low-latency

cores (#4-6) (i.e. order[47] < order[45]).
Following these rules, the total order of choices for a Pixel 3

(Prime core absent) is 4567, 456, 45, 4, 0123, 012, 01, 0.
Flamingo then prunes choices that present no viable tradeoff. For

e.g. choosing 4567 to train ShuffleNet on a Pixel 3 uses more cores
than choosing just 4, but also worsens both latency and energy
efficiency(Figure 3). Pruning finds choices that work best for a
SoC–model combination.

The performance profile of an SoC–model combination can in
turn inform the design of the DL model based on whether it is
able to maximize the utilization of all compute resources. For e.g.,
ShuffleNetv2 could switch to a different convolution operation to
benefit from compute scaling.

5 EVALUATION
We evaluate Flamingo in real-world settings on smartphones and in
a simulated setting of federated learning to gauge its large-scale im-
pact in distributed settings, by training three deep-learning models
on CV and NLP datasets.

5.1 Methodology
Experimental SetupWe benchmark (see App B) the energy usage
and latency for each DL model on 5 mobile-devices: Galaxy Tab
S6, OnePlus 8, Samsung S10e, Google Pixel 3 and Xiaomi Mi 10, to

https://github.com/SymbioticLab/FedScale/tree/master/fedscale/edge/termux
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Device
Speedup (Avg:12×) Energy Efficiency (Avg:8×)

Resnet34 ShuffleNetv2_x2 MobileNetv2 Resnet34 ShuffleNetv2_x2 MobileNetv2

Galaxy Tab S6 1.9× 21× 14.5× 1.9× 12.2× 9.4×

OnePlus 8 2.1× 17× 13.9× 2.4× 8.5× 7.5×

Google Pixel 3 1× 1.8× 1.6× 1× 1.8× 2.3×

Samsung S10e 1.9× 39× 31.8× 2.1× 39× 17.4×

Xiaomi Mi 10 2.1× 17.2× 14× 2.2× 7.8× 5.8×

Table 1: On-device Speedups and Energy Efficiency improvements over baseline.

Task Dataset #FL Clients #Samples Model Target Acc. Speedup Energy Eff.

Classification OpenImage [9] 14,477 1,672,231
MobileNetv2 [60] 52.8% 23.3× 7.0×

ShuffleNetv2_x2 [66] 46.3% 6.5× 5.8×

Speech Recog-
nition

Google Speech [63] 2,618 105,829 ResNet-34 [41] 60.8% 1.2× 1.6×

Table 2: Summary of improvements on time to accuracy and energy usage in large-scale evaluation.

obtain their performance profiles. We use FedScale [46] to evalu-
ate Flamingo in a large-scale federated-learning setting, using 20
A40 GPUs [34]. We emulate device behavior using pre-processed
device traces (see App A) from the GreenHub dataset [51] (300k
devices). We use the PCMarkWork 3.0 benchmark score [17], which
includes realistic workloads like web-browsing, video streaming,
etc. as opposed to stress testing viz. [8, 16], to measure the impact
of background training on the user-experience. We compare the
efficacy of Flamingo against the Energy-Aware Scheduler [32] to
reduce the impact on the PCMark score.

Calculating Energy Usage The energy is calculated by logging
the drop in battery SoC. Instantaneous Power is calculated as Volt-
age * Current. This can be approximated by averaging the current
and voltage over an interval of 1 % battery level drop. Average
Power = (𝑉𝑠𝑡𝑎𝑟𝑡 + 𝑉𝑒𝑛𝑑 )/2 ∗ (𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/100)/Δ𝑇 , where
𝑉𝑠𝑡𝑎𝑟𝑡 and 𝑉𝑒𝑛𝑑 are the battery voltages at the start and end of
the interval, and 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the charge capacity of the
smartphone’s battery in Coulombs, and Δ𝑇 being the length of the
time interval. The energy can be calculated across every drop in
battery level, and thus can be summed up in a piece-wise manner
across intervals that overlapped with the benchmark of concern to
produce a total energy usage estimate.

Datasets and Models We run two categories of applications
with real-world datasets of different scales, detailed in Table 2.
The ResNet34 model is trained on the GoogleSpeech dataset, and
MobileNetv2 and ShuffleNetv2_x2 are trained on the OpenImage
dataset.

Choice of On-device Backend We considered PyTorch [18],
TFLite [23] and MNN [1] as potential on-device backends.While
PyTorch could train all models used in our experiments, TFLite
and MNN failed due to known model conversion issues, lack of
operator support, or run-time issues related to memory bounds or
GPU support [15, 26]. We selected PyTorch as a backend and will
expand to other backends once these issues are addressed. PyTorch
can also be used as a backend to train on iOS devices [19]. iOS

offers a Thread Affinity API which hints the scheduler to bind
two or more threads to the same L2 cache to improve locality, but
currently cannot bind a thread to a CPU [11]. However, the QoS
value of a process has been shown as an effective way to migrate
the process between performance and efficiency cores and could
be used towards porting Flamingo to iOS devices [12, 14].

Hyperparameters The minibatch size is set to 16 for all tasks,
with a learning rate of 0.05, and a SGD optimizer. The baseline uses
the PyTorch execution choice, which uses all low-latency cores in
the SoC configuration. We use the FedAvg [52] averaging algorithm
to combine model updates.

Realistic Energy BudgetWe model FL-client device-failures
due to the additional energy cost of on-device training, using real-
world battery charge-discharge traces [51]. We calculate total avail-
able energy by tracking the energy added through charging, and
energy spent due to daily usage and on-device training. The device
is considered offline when the total available energy falls below a
minimum threshold.

Metrics For the real-world local evaluation, we want to reduce
execution latency while increasing energy efficiency. For the large-
scale FL simulation, we want to reduce the training time to reach
target accuracy, while reducing energy usage and number of clients
lost. We set the target accuracy to be the highest achieved by either
the baseline or Flamingo.

Device Baseline Flamingo Improvement

Galaxy Tab S6 -10.2 % -5.8 % 43 %

OnePlus 8 -12.5 % 0 % 100 %

Google Pixel 3 -27 % -3.1 % 88 %

Samsung S10e -11.2 % 0 % 100 %

Table 3: Impact of background-training on user-experience
as measured by PCMark.
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Figure 6: Large-Scale Federated Learning Results

5.2 Real-World Evaluation
Flamingo achieves 12× on-device training speedups and is
8× more energy efficient than the baseline on average (Table 1).
Flamingo picks optimal choices, especially for ShuffleNet and Mo-
bileNet models that are affected by cache-thrashing (Sec 3), over-
looked by the baseline.

Flamingo reduces impact on user-experience by 43-100
% measured by the impact of training on the PCMark Work 3.0
benchmark as shown in Table 3, entirely eliminating the interfer-
ence in OnePlus8 and S10e devices. This is due to the fact that
Flamingo is tightly-coupled to the on-device backend to scale down
its compute footprint using alternative choices discovered through
state-space exploration and relinquishing higher performing com-
pute to foreground applications, which the baseline cannot. The
improvement is particularly stark for the Pixel 3 since it is the
lowest-end entry-level device, implying Flamingo can benefit a
majority of smartphones [56] that are entry-level devices.

5.3 Large-Scale Evaluation
Flamingo reduces time to accuracy by 1.2-23× and improves
energy efficiency 1.6-7× for federated learning. Table 2 summa-
rizes the overall time-to-accuracy improvement, and Fig 6a-6c re-
port the corresponding training performance over time. Flamingo’s
improved energy efficiency directly translates to a larger pool of
participants available to perform training, unlike the baseline which
steadily loses devices with every passing round due to exhausting
the total available energy (Fig 6d, 6e). This indicates that Flamingo
allows clients to remain online for longer which helps the model
train faster, and device owners can simultaneously maintain
their regular usage behavior while participating in FL. Fig 6c
reports the ResNet-34 performance on the speech recognition task.
Due to the small number of clients that can be emulated in this

task, Flamingo and baseline achieve comparable time-to-accuracy
performance Fig 6f. However, Flamingo achieves better energy ef-
ficiency by tailoring the execution choice to each device training
Resnet34.

6 CONCLUSION
The need to train DNN models on end-user devices such as smart-
phones is only going to increase with privacy requirements becom-
ing more prevalent. We proposed Flamingo, a real-time adaptive
system specialized to efficiently train DNNs on Android smart-
phones, and to the best of our knowledge is the first to prioritize
user experience. By tightly coupling the scheduling strategy with
the DNN and SoC architecture, Flamingo achieved accelerated train-
ing times and reduced energy consumption across various tasks.
This enhancement proved advantageous in distributed training sce-
narios like federated learning, and offered an effective on-device
training solution that operates seamlessly alongside user applica-
tions without any interference. With this paper being a successful
first step, Flamingo will enable further research in this domain and
future practitioners can build on top of its toolchain. In order to
enable such advances, we will be releasing Flamingo’s source, and
will regularly update it to accommodate to diverse backends based
on the input from the community.
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A DATA PRE-PROCESSING
A.1 Monitoring and modeling resource usage
Due to the inherent scalability and logistical issues associated with
collecting the resource usage data of smartphones, we emulate
the background resource usage logging mentioned in Section 4 by
using a system trace dataset provided by GreenHub [51]. This data
was collected by a background app logging the usage of various
resources, resulting in collecting 50 million samples from 0.3 million
Android devices that are highly heterogeneous in terms of device
models and geographical locations. Each sample contains values for
different resources, including the battery_level and battery_state,
at a particular timestamp. We then filter the dataset for high quality
traces and then pre-process the data, detailed in Appendix A.

A.2 Trace Selection and Re-Sampling
We observe that the sampling frequencies and sampling periods for
users are not consistent given the complicated real-world settings.
To utilize the data, we first pre-processed the data. We selected 100
high-quality user traces out of 0.3 million users with the following
criteria: 1) The user has a sampling period that is no less than 28
days; 2) The user has an overall sampling frequency no less 5

432
Hz, which is equivalent to 100 samples one day on average across
the whole sampling period; 3) The maximum time gap between
two adjacent samples is no larger than 24 hours; 4) The number
of time gaps between two adjacent samples that are larger than 6
hours should be no more than 15. We resample the non-uniform
traces using Piecewise Cubic Hermite Interpolating Polynomial
(i.e. scipy.interpolate.PchipInterpolator) to a fixed rate of 10min
frequency.

After the resampling of "battery_level", we set the "battery_state"
to reflect whether the battery is charging(1), not discharging(0), or
discharging(-1). This depends on the sign of the difference between
the current "battery_level" and the previous "battery_level" for each
pair of consecutive data points.

Data augmentation for temporal heterogeneity. In order to simu-
late client availability across all time zones, we select sub-intervals
of 100 traces shifted by 1 hour, 23 times. This results in 2400 clients
spread across the planet.

B IMPLEMENTATION
In this section, we discuss the implementation we followed corre-
sponding to each step outlined in Section 4.

State-space of Execution Choices. For a given SoC, the state-space
of execution choices explores the effect on running the training on
a) different scales and b) different types of CPU cores. We explain
this using the SD865 SoC 1 as an example, which has 4 low-power
cores and 4 high-power cores. A brute-force exploration of the
state-space would result in 8! = 40320 choices. We exploit the
homogeniety of cores (i.e. using cores "01" is the same as using
cores "23") to avoid redundant choices and shrink the state-space
to (4 + 1) ∗ (4 + 1) − 1 = 24 choices. We conducted experiments
to study the efficacy of choices involving heterogeneous cores, e.g.
"40", "5410", by running DNN training of the evaluated models 2 and
parallelized matrix multiplication. The heterogeneous choices (e.g.
"5410") were consistently outperformed by their low-latency subset

choice (e.g. "54") in energy and in latency. This is due to the fact
that the low-power cores become stragglers, thus preventing higher
utilization of the low-latency cores and increase the overall latency.
Pruning away the heterogeneous choices reduces the state space
to 4 + 4 = 8, resulting in the following state space: "0", "01", "012",
"0123", "4", "45", "456", "4567". We also explore the energy-latency
tradeoff between the standard low-latency core and the "Prime"
low-latency core when present, e.g. in SD865 and SD855, since the
"Prime" latency cores consume more power but can take less time
to complete tasks. The 3 additional choices involving the "Prime"
core with other low-latency are "457", "47" and "7", bringing the size
of state-space to 11. The SD845 SoC used in the Pixel 3 only has 8
choices since it does not have a "Prime" core.

Implements Standardized Interface. We intend the client com-
munication interface of Flamingo to follow the existing standard
(i.e., client implements run_local_step and isActive) in order
to seamlessly work with existing distributed solutions such as fed-
erated learning server-client frameworks (e.g., PySyft). This also
reduces the possibility of introducing unintentional privacy leaks
by deviating from standardized client-coordinator interfaces.

Scheduling in Android. The first hurdle of running the training
process on Android was to ensure that the scheduler does not put
the process to sleep once the phone’s screen turns off. We solve
this issue by acquiring a "WakeLock" [3], an Android level feature
that allows the app unrestricted use of the processor. In order to be
able to explore the performance and energy usage of different core
combinations, we needed low-level control to limit the scheduling
of the training processes to a specific core or a set of cores and
change the number of threads at run-time. This required access to
the Linux scheduling API function calls sched_setaffinity and
sched_getaffinity [13]. The choice of the deep-learning library
implementation can determine native access to these APIs.

Mobile Deep Learning Library. We considered mobile-oriented
versions of predominant deep-learning frameworks, like PyTorch
and Deeplearning4J(DL4J), since they are already used in client-side
executors like KotlinSyft [59]. Although Android’s JNI API offers
access to system calls, the threading API used by the Android builds
of PyTorch and DL4J do not offer a way to change the number of
threads at run-time. On the other hand, PyTorch’s Linux backend
did have a way dynamically control the number of threads when
compiled with OpenMP [31].

Execution Environment. We utilize a Linux-like environment cre-
ated by Termux [24], a Linux terminal emulator app running on
an Android phone. This lets us access many low-level system calls,
including sched_setaffinity and sched_getaffinity. We use
PyTorch v1.8.1 with OpenMP, compiled on the device for the 64-bit
ARM architecture to run the local training. We use the termux-
api [25] interface to monotor the system-state, including the battery
state and charge level.

Performance and Energy Benchmarking. After setting the CPU
affinity, training costs associated with a particular deep-learning
model is benchmarked by amortizing the battery usage across mul-
tiple runs detailed. We then subtract power required to run other
processes and components of the phone to arrive at the energy and
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power usage of the training. In order to minimize the effect of the
external environment and other applications on the benchmark, we
stop all unnecessary services and background processes to isolate
the execution from any interference.

In a distributed setting like Federated Learning, this benchmark-
ing is performed during the first rounds of the device’s participation
when the phone is idle and is discharging. This is to minimize inter-
ference with other applications and accurately calculate the energy
usage of the training. After benchmarking the entire state-space
and pruning choices that do not present any viable tradeoff 4.2,
the performance profile of the device is compiled and sent to the
Central Coordinator 5a. This profile can be reused by other FL-
clients running on the same device (e.g. other Pixel 3 devices) and
skip the benchmarking process altogether, leading to efficient and
user-experience friendly execution from the start.
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